Acknowledgement
This work was supported by the research grant of the University of Jordan.
References
- H. Alnajjar, Leonard pairs associated with equitable generators of the quantum algebra Uq(sl2), Linear and Multilinear Algebra 59 (2011), 1127-1142. https://doi.org/10.1080/03081087.2011.565757
- H. Alnajjar, A linear map that acts as a Leonard pair with each of the generators of U(sl2), International Journal of Mathematics and Mathematical Science 2020 (2020).
- H. Alnajjar and B. Curtin, Leonard pairs from the equitable basis of sl2, ELA 20 (2010), 490-505. http://www.math.technion.ac.il/iic/ela/20.html
- H. Alnajjar and B. Curtin, Linear maps that act tridiagonally with respect to eigenbases of the equitable generators of Uq(sl2), Mathematics 2020 (2020).
- B. Hartwig, Three mutually adjacent Leonard pairs, Linear Algebra Appl. 408 (2005), 19-39. arXiv:math. AC/0508415 https://doi.org/10.1016/j.laa.2005.04.005
- T. Ito, P. Terwilliger and C.-W. Weng, The quantum algebra Uq(sl2) and its equitable presentation, Journal of Algebra 298 (2006), 284-301. https://doi.org/10.1016/j.jalgebra.2005.07.038
- C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
- Man Sang, Suogang Gao, Bo Hou, Leonard pairs and quantum algebra Uq(sl2), Linear Algebra Appl. 510 (2016), 346-360. https://doi.org/10.1016/j.laa.2016.08.034
- K. Nomura, Leonard pairs having LB-TD form, Linear Algebra Appl. 445 (2014), 1-21. https://doi.org/10.1016/j.laa.2014.04.025
- P. Terwilliger, The subconstituent algebra of an association scheme. III, J. Algebraic combin. 2 (1993), 177-210. https://doi.org/10.1023/A:1022415825656
- P. Terwilliger, Finite dimensional Uq(sl2)-modules from the equitable point of view, Linear Algebra Appl. 439 (2013), 358-400. https://doi.org/10.1016/j.laa.2013.03.022
- P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203. https://doi.org/10.1016/S0024-3795(01)00242-7
- P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2002), 827-888. https://doi.org/10.1216/rmjm/1030539699
- P. Terwilliger, Introduction to Leonard pairs. OPSFA Rome 2001, J. Comput. Appl. Math. 153 (2003), 463-475. https://doi.org/10.1016/S0377-0427(02)00600-3
- P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203. https://doi.org/10.1016/S0024-3795(01)00242-7
- P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, J. Algebra 291 (2005), 1-45. https://doi.org/10.1016/j.jalgebra.2005.05.033
- P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Des. Codes Cryptogr. 34 (2005), 307-332. https://doi.org/10.1007/s10623-004-4862-7