• 제목/요약/키워드: Finite-difference method

Search Result 2,416, Processing Time 0.025 seconds

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters

  • Ahmadivand, Arash;Golmohammadi, Saeed
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.274-282
    • /
    • 2014
  • In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.

Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter

  • Rahimzadegan, Aso;Granpayeh, Nosrat;Hosseini, Seyyed Poorya
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.261-273
    • /
    • 2014
  • In this paper, metal insulator metal (MIM) plasmonic slot cavity narrow band-pass filters (NBPFs) are studied. The metal and dielectric of the structures are silver (Ag) and air, respectively. To improve the quality factor and attenuation range, two novel NBPFs based on tapered structures and double cavity systems are proposed and numerically analyzed by using the two-dimensional (2-D) finite difference time domain (FDTD) method. The impact of different parameters on the transmission spectrum is scrutinized. We have shown that increasing the cavities' lengths increases the resonance wavelength in a linear relationship, and also increases the quality factor, and simultaneously the attenuation of the wave transmitted through the cavities. Furthermore, increasing the slope of tapers of the input and output waveguides decreases attenuation of the wave transmitted through the waveguide, but simultaneously decreases the quality factor, hence there should be a trade-off between loss and quality factor. However, the idea of adding tapers to the waveguides' discontinuities of the simple structure helps us to improve the device total performance, such as quality factor for the single cavity and attenuation range for the double cavity. According to the proposed NBPFs, two, three, and four-port power splitters functioning at 1320 nm and novel ultra-compact two-wavelength and triple-wavelength demultiplexers in the range of 1300-1550 nm are proposed and the impacts of different parameters on their performances are numerically investigated. The idea of using tapered waveguides at the structure discontinuities facilitates the design of ultra-compact demultiplexers and splitters.

Effects of Glass Texturing Structure on the Module Efficiency of Heterojunction Silicon Solar Cells

  • Park, Hyeongsik;Lee, Yoo Jeong;Shin, Myunghun;Lee, Youn-Jung;Lee, Jaesung;Park, Changkyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.102-108
    • /
    • 2018
  • A glass-texturing technique was developed for photovoltaic (PV) module cover glass; periodic honeycomb textures were formed by using a conventional lithography technique and diluted hydrogen fluoride etching solutions. The etching conditions were optimized for three different types of textured structures. In contrast to a flat glass substrate, the textured glasses were structured with etched average surface angles of $31-57^{\circ}$, and large aspect ratios of 0.17-0.47; by using a finite difference time-domain simulation, we show that these textured surfaces increase the amount of scattered light and reduce reflectance on the glass surface. In addition, the optical transmittance of the textured glass was markedly improved by up to 95% for wavelengths ranging from 400 to 1100 nm. Furthermore, applying the textured structures to the cover glass of the PV module with heterojunction with intrinsic thin-layer crystalline silicon solar cells resulted in improvements in the short-circuit current density and module efficiency from 39 to $40.2mA/cm^2$ and from 21.65% to 22.41%, respectively. Considering these results, the proposed method has the potential to further strengthen the industrial and technical competitiveness of crystalline silicon solar cells.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

The effect of curvature at the bottom of a soft ground tunnel by numerical analysis (수치해석에 의한 연약지반 터널의 바닥부 곡률의 영향 분석)

  • You, Kwangho;Kim, Kangsan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.107-118
    • /
    • 2021
  • Due to the acceleration of road construction, the number and extension of tunnels are increasing every year. A lot of research has been done on the collapse of tunnels, but research on the invert heaving is insufficient. Therefore, in this study, a sensitivity analysis was performed using a geotechnical general-purpose program to analyze the effect of the invert curvature of a tunnel excavated on the soft ground. As a result, it was quantitatively confirmed that the stability of a tunnel was increased as the curvature of the tunnel invert was increased so that the safety factor was calculated to be large regardless of the ground conditions and the thickness of the support. In addition, it was confirmed that the stability of the tunnel was increased by reducing the convergence of the tunnel and the maximum bending stress supported by shotcrete. Therefore, when a tunnel is excavated on soft ground, it is believed that applying a curvature to the invert will increase the stability of the tunnel.

A Study on the Analysis of Electromagnetic Characteristics and Design of a Cylindrical Photonic Crystal Waveguide with a Low-Index Core (중심-동공을 갖는 원통형태 광결정 도파로의 전자장 특성 분석 및 설계 연구)

  • Kim, Jeong I.
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, a cylindrical photonic crystal waveguide with a low-index core is first proposed. The core can be filled with air, liquid, or arbitrary dielectric materials. Exact analyses for the electromagnetic field characteristics of guided modes, by using appropriate Bessel functions and applying the boundary conditions, are performed to find out the guiding characteristics of the proposed waveguide. For verification and usage in design and manufacturing process, the computer-calculation of the waveguide transmission characteristics is also performed by applying the rigorous full-vectorial finite difference method. Providing variations of the effective area for the fundamental mode of the designed waveguide with different numbers of cladding layers, ranging from 2.6056 ㎛2 to 5.9673 ㎛2 over the operation wavelength, generally as the core refractive index n1 is higher, the mode area becomes smaller and the result leads to more optimistic effect for nonlinear device applications.

Evaluation of Liquefaction Model using Dynamic Centrifuge Test (포화된 경사 사질토 지반의 액상화 수치모델 거동평가)

  • Lee, Jin-Sun;Lee, Sang-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.31-42
    • /
    • 2022
  • This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

Development of an Empirical Equation for Estimating Lond Transfer Curve for Micropile in Weathered Soils (풍화지반에 근입된 마이크로파일의 하중전이곡선 추정을 위한 경험식 개발)

  • Park, Seong-Wan;Cho, Kook-Hwan;Roh, Kang-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.5-11
    • /
    • 2007
  • Micropiles have been used for underpinning or rehabilitation of existing foundations, and direct structural support system as well. However, relatively few studies have been done on the load-transfer mechanism of micropile systems in Korea. In addition to that, only the limited information is available for estimating the side friction values on micropiles installed in weathered soils. In this study, a full-scale test on an instrumented micropile is performed in order to establish the load-transfer curves based on a hyperbolic function. Then, an empirically derived equation that correlates the load-transfer curve of micropiles with the N values from field standard penetration tests is proposed. The results from all procedures are presented in this paper. Finally, back analysis using a finite difference method and the published field data are adopted for examination of a developed skin friction equation of micropile in weathered soils respectively.

DMD based modal analysis and prediction of Kirchhoff-Love plate (DMD기반 Kirchhoff-Love 판의 모드 분석과 수치해 예측)

  • Shin, Seong-Yoon;Jo, Gwanghyun;Bae, Seok-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1586-1591
    • /
    • 2022
  • Kirchhoff-Love plate (KLP) equation is a well established theory for a description of a deformation of a thin plate under certain outer source. Meanwhile, analysis of a vibrating plate in a frequency domain is important in terms of obtaining the main frequency/eigenfunctions and predicting the vibration of plate. Among various modal analysis methods, dynamic mode decomposition (DMD) is one of the efficient data-driven methods. In this work, we carry out DMD based modal analysis for KLP where thin plate is under effects of sine-type outer force. We first construct discrete time series of KLP solutions based on a finite difference method (FDM). Over 720,000 number of FDM-generated solutions, we select only 500 number of solutions for the DMD implementation. We report the resulting DMD-modes for KLP. Also, we show how DMD can be used to predict KLP solutions in an efficient way.