• Title/Summary/Keyword: Finite-depth effect

Search Result 278, Processing Time 0.028 seconds

Numerical Study on Floating-Body Motions in Finite Depth

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2012
  • Installing floating structures in a coastal area requires careful observation of the finite-depth effect. In this paper, a Rankine panel method that includes the finite-depth effect is developed in the time domain. The bottom boundary condition is satisfied by directly distributing Rankine panels on the bottom surface. A stepwise analysis is performed for the radiation diffraction problems and consequently freely-floating motion responses over different water depths. The hydrodynamic properties of two test hulls, a Series 60 and a floating barge, are compared to the results from another computation program for validation purposes. The results for both hulls change remarkably as the water depth becomes shallower. The important features of the results are addressed and the effects of a finite depth are discussed.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

The Effect of Forebody Forms on the Ship Motion in Water of Finite Depth (유한(有限)깊이의 물에서의 선체운동(船體運動) -선수선형(船首船型)의 영향(影響)-)

  • J.H.,Hwang;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 1976
  • The effect of the bow shape on the ship motion response in longitudinal regular waves of water of finite depth is investigated by employing the strip theory. The two-dimensional hydrodynamic forces(added mass and damping) were calculated by close-fit method for water of finite depth. The models for investigation are U and V bow ship forms of block coefficient 0.8 with constant after body which were used by Yourkov [2] and recently by Kim [3] for their deep water investigations. The following results are obtained by the present numerical experiments. (1) It is confirmed that the damping coefficient of the V-bow ship is greater than that of U-bow ship and in consquence the amplitude of heave and pitch of V-bow ship is smaller than that of U-bow ship among longitudinal regular head waves in water of finite depth (2) The merit of the V-bow ship on the motion damping is more significant in heave than in pitch, and is decreasing with the shallowness of water depth. (3) The change of bow form gives little effect on the wave exciting force and moment compared with the motion responce.

  • PDF

Model studies of uplift capacity behavior of square plate anchors in geogrid-reinforced sand

  • Keskin, Mehmet S.
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.595-613
    • /
    • 2015
  • An experimental investigation into the uplift capacity of horizontal square plate anchors in sand with and without geogrid reinforcement is reported. The parameters investigated are the effect of the depth of the single layer of geogrid, vertical spacing of geogrid layers, number of geogrid layers, length of geogrid layers, the effects of embedment depth, and relative density of sand. A series of three dimensional finite element analyses model was established and confirmed to be effective in capturing the behaviour of plate anchor-reinforced sand by comparing its predictions with experimental results. The results showed that the geogrid reinforcement had a considerable effect on the uplift capacity of horizontal square plate anchors in sand. The improvement in uplift capacity was found to be strongly dependent on the embedment depth and relative density of sand. A satisfactory agreement between the experimental and numerical results on general trend of behaviour and optimum geometry of reinforcement placement is observed. Based on the model test results and the finite element analyses, optimum values of the geogrid parameters for maximum reinforcing effect are discussed and suggested.

Finite Element Analysis on Effect of Die Clearance on Shear Planes in Fine Blanking (파인 블랭킹에서 전단면에 미치는 다이 틈새의 영향에 관한 유한 요소 해석)

  • 김윤주;곽태수;배원병
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2000
  • A finite element analysis has been performed to investigate the effect of die clearance on shear planes in the fine blanking of a part of automobile safety belt. For the analysis, S45C is selected as an material, which is used in manufacturing the part of automobile safety belt, and Cockcroft-Latham fracture criterion is applied. Effect of die Clearance on die-roll width, die-roll depth, burnish zone, and fracture zone has been investigated in the finite element analysis by a rigid-plastic FEM code, DEFORM-2D. From the analysis, it has been found that die-roll depth and depth of the shear plane increase with increasing die clearance. And the burnish zone decreases with increasing die clearance, but the variation of fracture zone is opposite to that of burnish zone because the increase in die clearance requires less fracture energy. Theoretical predictions are compared with experimental results. There is a good agreement between theory and experiment.

  • PDF

The Finite Depth Effect on the Ship Motion in Longitudinal Regular Head Waves (종규칙파중(縱規則波中)에서 수심(水深)이 선체운동(船體運動)에 미치는 영향(影響))

  • J.H.,Hwang;S.J.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1975
  • Recently, as the dimensions of energy carriers increase, especially in draft, a reliable prediction of the ship motions at finite depths of water becomes necessary. The purpose of this paper is to probe the effect of finite water depth on the hydrodynamic forces and ship motions, particularly heave and pitch, in longitudinal regular head waves, by comparing the experimental value of Freakes and Keay with the author's theoretical value obtained by applying the modified strip theory to the Mariner class ship. It is confirmed that generally the hydrodynamic coefficients in the equations of motion increase with decreasing water depth, and the wave exciting forces and moments decrease with decreasing water depth. Amplitudes of heave and pitch in longitudinal regular head waves decrease as the water depth in the range where the length of the incident wave is comparatively long. The effects of Froude Number on the hydrodynamic coefficients increase with decreasing water depth and is more noticeable in the case of heave than pitch. In heave, generally the discrepancy between the experimental value and the theoretical value is relatively small in the case of $F_n=O$, but it is very large in the case of $F_n=0.2$. It is considered that the trend stems from the ignorance of the three dimensional effect and the other effects due to shallowness of water on the hydrodynamic coefficients in the theoretical calculation. An extension of methods for calculating the two dimensional hydrodynamic forces to included the effect of forward speed should be recommended. It is required that more experimental works in finite water depths will be carried out for correlation studies between the theoretical calculation, according tp modified strip theory, and model experiments.

  • PDF

Finite Element Analysis on Effect of die clearance on shear planes in Fine Blanking (파인 블랭킹에서 전단면에 미치는 다이 틈새의 영향에 관한 유한요소해석)

  • 곽태수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.40-44
    • /
    • 1999
  • A finite element analysis has been performed to investigate the effect of die clearance on shear planes in the fine blanking of a part of automobile safety belt. For the analysis S45$^{\circ}C$ is selected as an material which is used in manufacturing the part of automobile safety belt and Cockcroft-Latham fracture criterion is applied, Effect of die clearance on die-roll width die-roll depth burnish zone and fracture zone has been concentrately investigated in the finite element analysis. From the analytical results it has been found that die-roll width and depth of the shear plane increase with increasing die clearance. And the burnish zone has been concentrately investigated in the finite element analysis. From the analytical results it has been found that die-roll width and depth of the shear plane increase with increasing die clearance. and the burnish zone decreases with increasing die clearance but the variation of fracture zone is opposite to that of burnish zone because the increase in die clearance requires less fracture energy Theoretical predictions are compared with experimental results, There is a good agreement between theory and experiment

  • PDF

Development of Simplified Formulae for Added Mass of a 2-D Floating Body with a Semi-Circle Section in a Finite Water Depth (유한 수심에서 반원형 부유체의 부가질량계수 약산식 개발)

  • Koo, Weoncheol;Kim, Jun-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.80-84
    • /
    • 2013
  • This study is to develop the simplified formulae for added mass coefficient of a 2-D floating body with a semi-circle section in a finite water depth. The semi-circle floating body may represent a simplified midship section transformed by Lewis form, which can be used for the ship motion analysis by strip theory. Since the added mass coefficient varies with motion frequencies and sea bottom effect, the correction factor representing the effect of water depth and frequencies is developed for accurate prediction of added mass. Using a two-dimensional numerical wave tank (NWT) technique based on the boundary element method (BEM) including sea bottom boundary the reference values of added mass are calculated to develop the correction factor. For verification and effectiveness of the formulae, the predicted added mass coefficients for various frequencies and water depth ratios are compared with the calculated values from NWT technique.

Analysis of Bobbin Probe Signal in Steam Generator Tube with Bulge Defect (증기발생기 세관의 Bulge결함에 대한 보빈프로브 신호해석)

  • Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.702-704
    • /
    • 2003
  • In this paper, analysis of bobbin probe signal in steam generator tube with bulge defect on CE system 80 nuclear power plant is represented. The CE system 80 steam generator is adopted in ULJIN-4 nuclear power plant. From Maxwell's equation, the electromagnetic governing equation for eddy current problem is derived and by performing the finite element formulation the 3-dimensional finite element code with brick element is developed. For the ease of the comparison the numerical results with experimental ones, the calculated signals are adjusted by using the ASME standard 100[%] through hole signal. For analysis of the effect of variation of the bulge depth on the impedance signal 0.2[mm] and 0.4[mm] depth of bulge defect signals are calculated and analyzed. As the depth of the bulge defect is increased, the magnitude of the signal is increased, too. But the rate of the increment of the signal is less than that of the depth of defect. From the result of this paper, we can obtained the information of the effect of bulge defect on the impedance signal.

  • PDF

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

  • Koo, Weoncheol;Kim, Jun-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.115-127
    • /
    • 2015
  • The aim of this study is to develop a simplified formula for added mass coefficients of a two-dimensional floating body moving vertically in a finite water depth. Floating bodies with various sectional areas may represent simplified structure sections transformed by Lewis form, and can be used for floating body motion analysis using strip theory or another relevant method. Since the added mass of a floating body varies with wave frequency and water depth, a correction factor is developed to take these effects into account. Using a developed two-dimensional numerical wave tank technique, the reference added masses are calculated for various water depths at high frequency, and used them as basis values to formulate the correction factors. To verify the effectiveness of the developed formulas, the predicted heave added mass coefficients for various wetted body sections and wave frequencies are compared with numerical results from the Numerical Wave Tank (NWT) technique.