• Title/Summary/Keyword: Finite substrate

Search Result 247, Processing Time 0.025 seconds

A new strain analysis model in epitaxial multilayer system (다층 구조에 대한 새로운 strain 해석 모델)

  • Jang, Dong-Hyeon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.237-238
    • /
    • 2007
  • A new strain analysis model, so called the stress matched model, in an epitaxial multilayer system is proposed. The model makes it possible to know the strain, the stress, the elastic strain energy in each epitaxial layer. Analytical formulas of strain parameters in each epitaxial layer are derived under assumptions that the substrate thickness is finite and the in-plane lattice constant is the same for all epitaxial layers for dislocation free growth. As an example, the model is applied to a 405nm InGaN/InGaN multiple quantum well laser diode. Analysis result shows that AlxGa1-xN layer with Al mole fraction of 0.06 and the thickness of 6${\mu}m$ is one of good templates for a laser. In fact, this layer structure coincides with experimentally optimized one.

  • PDF

A Study of Cooling of Mobile Phone Using PCM Module (상변화 물질을 이용한 이동전화기의 냉각에 관한 연구)

  • Lee, Sang-Jin;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1173-1181
    • /
    • 2005
  • The cooling effect of a mobile phone using PCM(Phase Change Material) module has been numerically investigated. A transient three-dimensional numerical analysis of heat and fluid flow with natural convection is performed in this study. Governing conservation equations for mass, momentum and energy are solved by an implicit finite volume method. An enthalpy-porosity technique has been used for modeling of the melting process. Two different ways of placing the PCM module are considered. One is to place a PCM module between the substrate and battery pack, and the other is to place a PCM module between MCM(multichip module) and battery pack. Three different types of PCMs are used to predict the performance of PCM. The results show that passive cooling with PCM can reduce the temperature rise and the effect of natural convection in PCM module considered in this study is negligible.

The Characteristic Analysis of the Cross-shaped Microstrip Slot Antenna with the Reflector for Permittivity and Height of Dielectrics

  • Jang, Yong-Woong;Shin, Ho-Sub;Oh, Dong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.183-186
    • /
    • 2000
  • We analyzed the cross-shaped microstripline-fed slot antenna with the reflector using FDTD(Finite-Difference Time-Domain) method in this paper. The proposed antenna uses RR Duroid-5880 substrate(relative permittivity 2.2 and height(1.578 mm) of dielectrics), and compares the optimized results of other kind substrates. The maximum bandwidth of the proposed antenna is from 1.91 GHz to 5.21 GHz, which is approximately 1.437 octave for the VSWR $\leq$ 2. It was found that the bandwidth of the antenna depend highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The experimented data for the VSWR and the radiation pattern of the antenna are also represented.

  • PDF

A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement (다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서)

  • Chung Wan-Young;Kim Tae-Yong;Seo Yong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

Design of Low Consume Power Ty7e Micro-heaters Using SOl and Trench Structures (SOI 및 TRENCH 구조를 이용한 저소비 전력형 미세발열체의 설계)

  • Jang, Soo;Hong, Seok-Woo;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.350-353
    • /
    • 1999
  • This Paper Presents the optimized design of micro-heaters using 501(Si-on-insulator) substrate and oxide-filled trench structure In order to justify a lumped model approximation and thermal boundary assumptions, two-dimensional FDM(finite difference among which conduction is the dominant heat dissipation path. Compared with no-trenchs on the SOI structure, the micro-heaters with trench structures has properties of low heater loss and good thermal isolation. The simulation results show that the heater loss decreases as the number. width and distance of trenchs increases.

  • PDF

Longitudinal Ultrasonic Bonding of Strip-type Au Bumps (스트립 형상인 Au 범프의 종방향 초음파 접합)

  • 김병철;김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • The strip Au bumps are bonded using longitudinal ultrasonic far the electronic package. Au bumps on the chip and substrate are aligned in a crossed shape, and the ultrasonic is imposed on the chip to form the solid-state bond between the Au bumps. Deformed bump shapes are calculated using the finite element method, and the bond strength is measured experimentally. The crossed strip Au bumps are deformed similar to the saddle, which provides larger contact surface area and higher friction force. Compared with the previous bonding method between the Au bump and planar pad, higher bond strength is obtained using the crossed strip bumps.

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Method of Reducing Residual Vibration at the LCD Transfer Robot (디스플레이 반송로봇 잔류진동 저감방안)

  • Moon, Sung Bae;Rim, Kyung-Hwa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.98-105
    • /
    • 2017
  • In the display industry, the residual vibration of the transfer robot can increase the process time and cause the breakage of the glass substrate, which is critical to productivity of display manufacturing. In this paper, the natural frequencies of transfer robot are analyzed by finite element method. On the basis of the analyzed data, we investigated the response characteristics of input shaping control with or without the glass presence on the hand of the transfer robot using MATLAB program, and compared with the current response characteristics of input shaping control applied to the industry. Based on this, we suggest an optimal residual vibration control method for the practical application in display industry.

  • PDF

One-Step Nanoscale Patterning of Silver Ionic Ink via Elastic Mold Deformation (탄성 몰드 변형을 이용한 은 이온 잉크의 원-스텝 나노스케일 패터닝)

  • Yong Suk Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.252-256
    • /
    • 2023
  • A one-step method for nanoscale patterning of silver ionic ink on a substrate is developed using a microscale, elastic mold deformation. This method yields unique micro/nanoscale metallic structures that differ from those produced using the original molds. The linewidth of these metallic structures is significantly reduced (approximately 10 times) through the sidewall deformation of the original mold cavity on a thin liquid film, as verified by finite element analysis. The process facilitates the fabrication of various, isolated and complex micro/nanoscale metallic structures with negligible residual layers at low cost and high throughput. These structures can be utilized for various applications, including optoelectronics, wearable sensors, and metaverse-related devices. Our approach offers a promising tool for manipulation and fabrication of micro/nanoscale structures of various functional materials.

A Study on the Heat Transfer Characteristics of Single Bead Deposition of Inconel 718 Superalloy on S45C Structural Steel Using a DMT Process (DMT 공정을 이용한 S45C 구조용강 위 Inconel 718 초합금 단일 비드 적층시 열전달 특성 분석에 관한 연구)

  • Lee, Kwang-Kyu;Ahn, Dong-Gyu;Kim, Woo-Sung;Lee, Ho-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.56-63
    • /
    • 2020
  • The heat transfer phenomenon in the vicinity of the irradiated region of a focused laser beam of a DMT process greatly affects both the deposition characteristics of powders on a substrate and the properties of the deposited region. The goal of this paper is to investigate the heat transfer characteristics of a single bead deposition of Inconel 718 powders on S45C structural steel using a laser-aided direct metal tooling (DMT) process. The finite element analysis (FEA) model with a Gaussian volumetric heat flux is developed to simulate a three-dimensional transient heat transfer phenomenon. The cross-section of the bead for the FEA is estimated with an equivalent area method using experimental results. Through the comparison of the results of the experiments and those of the analysis, the effective beam radius of the bottom region of the volumetric heat flux and the efficiency of the heat flux model for different powers and travel speeds of the laser are predicted. From the results of the FEA, the influence of the power and the travel speed of the laser on the creation of a steady-state heat transfer region and the formation of the heat-affected zone (HAZ) in the substrate are investigated.