• Title/Summary/Keyword: Finite substrate

Search Result 247, Processing Time 0.025 seconds

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

Evaluation of Brinell Hardness of Coated Surface Using Finite Element Analysis: Part 1 - A Feasibility Study (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제1보 - 타당성 연구)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.378-384
    • /
    • 2020
  • The friction surfaces of mechanical parts are heat-treated or coated with hard materials to minimize wear. Increasing the hardness is a very useful way to reduce abrasive wear. The general Brinell hardness test, which is widely used for metallic materials, is not suitable because it hardly shows any change in hardness when coated with thin films. In this study, we propose a basis for the application of the new Brinell hardness test method to the coated friction surface. An indentation analysis of the rigid sphere and elastic-perfectly plastic materials is performed using a commercial finite element analysis software. The results indicate that their loadto-diameter ratio is the same; the Brinell hardness test method can be applied even when the indenter diameter is on the micrometer scale. In the case of hard coating, it is difficult to calculate Brinell hardness using the diameter of the indentation, but the study revealed, for the first time, that it can be calculated using the depth of the indentation regardless of coating. The change in hardness owing to thin film coating over a wide load range implies that the hardness evaluation method is appropriate. Additional studies on various properties related to the substrate and coating material are required to apply the proposed method.

Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method

  • Polat, Alper;Kaya, Yusuf
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.247-253
    • /
    • 2022
  • In this study, the problem of discontinuous contact in two functionally graded (FG) layers resting on a rigid plane and loaded by two rigid blocks is solved by the finite element method (FEM). Separate analyzes are made for the cases where the top surfaces of the problem layers are metal, the bottom surfaces are ceramic and the top surfaces are ceramic and the bottom surfaces are metal. For the problem, it is accepted that all surfaces are frictionless. A two-dimensional FEM analysis of the problem is made by using a special macro added to the ANSYS package program The solution of this study, which has no analytical solution in the literature, is given with FEM. Analyzes are made by loading different Q and P loads on the blocks. The normal stress (σy) distributions at the interfaces of FG layers and between the substrate and the rigid plane interface are obtained. In addition, the starting and ending points of the separations between these surfaces are determined. The normal stresses (σx, σy) and shear stresses (τxy) at the point of separation are obtained along the depth. The results obtained are shown in graphics and tables. With this method, effective results are obtained in a very short time. In addition, analytically complex and long problems can be solved with this method.

Wafer Level Packaging of RF-MEMS Devices with Vertical Feed-through (수직형 Feed-through 갖는 RF-MEMS 소자의 웨이퍼 레벨 패키징)

  • Park, Yun-Kwon;Lee, Duck-Jung;Park, Heung-Woo;kim, Hoon;Lee, Yun-Hi;Kim, Chul-Ju;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.889-895
    • /
    • 2002
  • Wafer level packaging is gain mote momentum as a low cost, high performance solution for RF-MEMS devices. In this work, the flip-chip method was used for the wafer level packaging of RF-MEMS devices on the quartz substrate with low losses. For analyzing the EM (electromagnetic) characteristic of proposed packaging structure, we got the 3D structure simulation using FEM (finite element method). The electric field distribution of CPW and hole feed-through at 3 GHz were concentrated on the hole and the CPW. The reflection loss of the package was totally below 23 dB and the insertion loss that presents the signal transmission characteristic is above 0.06 dB. The 4-inch Pyrex glass was used as a package substrate and it was punched with air-blast with 250${\mu}{\textrm}{m}$ diameter holes. We made the vortical feed-throughs to reduce the electric path length and parasitic parameters. The vias were filled with plating gold. The package substrate was bonded with the silicon substrate with the B-stage epoxy. The loss of the overall package structure was tested with a network analyzer and was within 0.05 dB. This structure can be used for wafer level packaging of not only the RF-MEMS devices but also the MEMS devices.

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(II) (화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조(II))

  • 윤영훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 1999
  • The effects of density and pore size distribution of substrate in preparing SiC conversiton layer on graphite substrate were investigated. The chemical reaction for formation of SiC conversion layer was occurred at substrate surface or below surface through SiC gas infiltration. It was supposed that the pore size distribution required for the sufficient SiO gas infiltration and the continuous chemical reaction during conversion process was in the range of 1.0∼10.0$\mu\textrm{m}$. In the stress analysis of SiC layer with finite element method (FEM), the residual stress distribution due to thermal mismatch was shown. However, the compressive stress was measured in SiC layer by X-ray diffraction, it was presumed that the residual stress distribution of SiC layer was mainly influenced by the constraining effect of interlayer between SiC layer and graphite substrate, and the densification behaviro and the grain growth in SiC conversion layer.

  • PDF

An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates (세라믹 하니컴 담체의 3차원 유한요소해석을 위한 등가탄성방법의 효과적인 접근)

  • Baek, Seok-Heum;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.223-233
    • /
    • 2011
  • A ceramic monolithic catalyst is a honeycomb structure that consists of two layers. The honeycomb structure is regarded as a continuum in structure and heat-flow analysis. The equivalent mechanical properties of the honeycomb structure were determined by performing finite element analysis (FEA) for a test specimen. Bending strength experiments and FEA of the test specimen used in ASTM C1674-08 standard test were performed individually. The bonding coefficient between the cordierite ceramic layer and the washcoat layer was almost zero. The FEA test specimen was modeled on the basis of the bonding coefficient. The elastic modulus, Poisson's ratio, and the thermal properties of the ceramic monolithic substrate were determined by performing the FEA of the test specimen.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Analysis of a transmission line on Si-based lossy structure using Finite-Difference Time-Domain(FDTD) method (손실있는 실리콘 반도체위에 제작된 전송선로의 유한차분법을 이용한 해석)

  • 김윤석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1527-1533
    • /
    • 2000
  • Basically, a general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line is used. In this paper, an analysis for a new substrate shielding MIS structure consisting of grounded cross-bars at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor have been examined as functions of cross-bar spacing and frequency. It is shown that the quality factor of the transmission line can be improved without significant change in the characteristic impedance and effectve dielectric constant.

  • PDF

Analytical and experimental investigation of stepped piezoelectric energy harvester

  • Deepesh, Upadrashta;Li, Xiangyang;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.681-692
    • /
    • 2020
  • Conventional Piezoelectric Energy Harvesters (CPEH) have been extensively studied for maximizing their electrical output through material selection, geometric and structural optimization, and adoption of efficient interface circuits. In this paper, the performance of Stepped Piezoelectric Energy Harvester (SPEH) under harmonic base excitation is studied analytically, numerically and experimentally. The motivation is to compare the energy harvesting performance of CPEH and SPEHs with the same characteristics (resonant frequency). The results of this study challenge the notion of achieving higher voltage and power output through incorporation of geometric discontinuities such as step sections in the harvester beams. A CPEH consists of substrate material with a patch of piezoelectric material bonded over it and a tip mass at the free end to tune the resonant frequency. A SPEH is designed by introducing a step section near the root of substrate beam to induce higher dynamic strain for maximizing the electrical output. The incorporation of step section reduces the stiffness and consequently, a lower tip mass is used with SPEH to match the resonant frequency to that of CPEH. Moreover, the electromechanical coupling coefficient, forcing function and damping are significantly influenced because of the inclusion of step section, which consequently affects harvester's output. Three different configurations of SPEHs characterized by the same resonant frequency as that of CPEH are designed and analyzed using linear electromechanical model and their performances are compared. The variation of strain on the harvester beams is obtained using finite element analysis. The prototypes of CPEH and SPEHs are fabricated and experimentally tested. It is shown that the power output from SPEHs is lower than the CPEH. When the prototypes with resonant frequencies in the range of 56-56.5 Hz are tested at 1 m/s2, three SPEHs generate power output of 482 μW, 424 μW and 228 μW when compared with 674 μW from CPEH. It is concluded that the advantage of increasing dynamic strain using step section is negated by increase in damping and decrease in forcing function. However, SPEHs show slightly better performance in terms of specific power and thus making them suitable for practical scenarios where the ratio of power to system mass is critical.

Experimental and Numerical Analysis of Microvia Reliability for SLP (Substrate Like PCB) (실험 및 수치해석을 이용한 SLP (Substrate Like PCB) 기술에서의 마이크로 비아 신뢰성 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • Recently, market demands of miniaturization, high interconnection density, and fine pitch of PCBs continuously keep increasing. Therefore, SLP (substrate like PCB) technology using a modified semi additive process (MSAP) has attracted great attention. In particular, SLP technology is essential for the development of high-capacity batteries and 5G technology for smartphones. In this study, the reliability of the microvia of hybrid SLP, which is made of conventional HDI (high density interconnect) and MSAP technologies, was investigated by experimental and numerical analysis. Through thermal cycling reliability test using IST (interconnect stress test) and finite element numerical analysis, the effects of various parameters such as prepreg properties, thickness, number of layers, microvia size, and misalignment on microvia reliability were investigated for optimal design of SLP. As thermal expansion coefficient (CTE) of prepreg decreased, the reliability of microvia increased. The thinner the prepreg thickness, the higher the reliability. Increasing the size of the microvia hole and the pad will alleviate stress and improve reliability. On the other hand, as the number of prepreg layers increased, the reliability of microvia decreased. Also, the larger the misalignment, the lower the reliability. In particular, among these parameters, CTE of prepreg material has the greatest impact on the microvia reliability. The results of numerical stress analysis were in good agreement with the experimental results. As the stress of the microvia decreased, the reliability of the microvia increased. These experimental and numerical results will provide a useful guideline for design and fabrication of SLP substrate.