• Title/Summary/Keyword: Finite fields GF($2^{m}$)

Search Result 62, Processing Time 0.027 seconds

Design of Low-Latency Architecture for AB2 Multiplication over Finite Fields GF(2m) (유한체 GF(2m)상의 낮은 지연시간의 AB2 곱셈 구조 설계)

  • Kim, Kee-Won;Lee, Won-Jin;Kim, HyunSung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

Design of High-speed Digit Serial-Parallel Multiplier in Finite Field GF($2^m$) (Finite Field GF($2^m$)상의 Digit Serial-Parallel Multiplier 구현)

  • Choi, Won-Ho;Hong, Sung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.928-931
    • /
    • 2003
  • This paper presents a digit-serial/parallel multiplier for finite fields GF(2m). The hardware requirements of the implemented multiplier are less than those of the existing multiplier of the same class, while processing time and area complexity. The implemented multiplier possesses the features of regularity and modularity. Thus, it is well suited to VLSI implementation. If the implemented digit-serial multiplier chooses the digit size D appropriately, it can meet the throughput requirement of a certain application with minimum hardware. The multipliers and squarers analyzed in this paper can be used efficiently for crypto processor in Elliptic Curve Cryptosystem.

  • PDF

Operations in finite fields using Modified method (Modified 방법을 이용한 유한체의 연산)

  • 김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 1998
  • 최근들어 타원곡선 암호법(ECC)이 RSA암호법을 대체할 것으로 기대되면서ECC의 연산속도를 결정하는 중요한 요소인 유한체의 연산 속도에 관심이 고조되고 있다. 본 논문에서는 Modified 최적 정규 기저의 성질 규명과 GF(q)(q=2$^{k}$ , k=8또는 16)위에서 GF(q$^{m}$ )(m: 홀수)의 Mofdified trinomial 기가 존재하는 m들을 제시하고, GF(r$^{n}$ )위에서 GF(r$^{nm}$ )dml Modified 최적 정규기저와 Modified trinomial 기저를 이용한 연산의 회수와 각 기저를 이용한 연산의 회수와 각 기저를 이용한 유한체 GF(q$^{m}$ )의 연산을 S/W화한 결과를 비교 하였다.

Efficient Serial Gaussian Normal Basis Multipliers over Binary Extension Fields

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2009
  • Finite field arithmetic is very important in the area of cryptographic applications and coding theory, and it is efficient to use normal bases in hardware implementation. Using the fact that $GF(2^{mk})$ having a type-I optimal normal basis becomes the extension field of $GF(2^m)$, we, in this paper, propose a new serial multiplier which reduce the critical XOR path delay of the best known Reyhani-Masoleh and Hasan's serial multiplier by 25% and the number of XOR gates of Kwon et al.'s multiplier by 2 based on the Reyhani-Masoleh and Hasan's serial multiplier for type-I optimal normal basis.

  • PDF

An Efficient Bit-serial Systolic Multiplier over GF($2^m$) (GF($2^m$)상의 효율적인 비트-시리얼 시스톨릭 곱셈기)

  • Lee Won-Ho;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.62-68
    • /
    • 2006
  • The important arithmetic operations over finite fields include multiplication and exponentiation. An exponentiation operation can be implemented using a series of squaring and multiplication operations over GF($2^m$) using the binary method. Hence, it is important to develop a fast algorithm and efficient hardware for multiplication. This paper presents an efficient bit-serial systolic array for MSB-first multiplication in GF($2^m$) based on the polynomial representation. As compared to the related multipliers, the proposed systolic multiplier gains advantages in terms of input-pin and area-time complexity. Furthermore, it has regularity, modularity, and unidirectional data flow, and thus is well suited to VLSI implementation.

A Fast Method for Computing Multiplcative Inverses in GF(2$^{m}$ ) Using Normal Bases

  • 장용희;권용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • Cryptosystems have received very much attention in recent years as importance of information security is increased. Most of Cryptosystems are defined over finite or Galois fields GF($2^m$) . In particular, the finite field GF($2^m$) is mainly used in public-key cryptosystems. These cryptosystems are constructed over finite field arithmetics, such as addition, subtraction, multiplication, and multiplicative inversion defined over GF($2^m$) . Hence, to implement these cryptosystems efficiently, it is important to carry out these operations defined over GF($2^m$) fast. Among these operations, since multiplicative inversion is much more time-consuming than other operations, it has become the object of lots of investigation. Recently, many methods for computing multiplicative inverses at hi호 speed has been proposed. These methods are based on format's theorem, and reduce the number of required multiplication using normal bases over GF($2^m$) . The method proposed by Itoh and Tsujii[2] among these methods reduced the required number of times of multiplication to O( log m) Also, some methods which improved the Itoh and Tsujii's method were proposed, but these methods have some problems such as complicated decomposition processes. In practical applications, m is frequently selected as a power of 2. In this parer, we propose a fast method for computing multiplicative inverses in GF($2^m$) , where m = ($2^n$) . Our method requires fewer ultiplications than the Itoh and Tsujii's method, and the decomposition process is simpler than other proposed methods.

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.

Construction of High-Speed Parallel Multiplier on Finite Fields GF(3m) (유한체 GF(3m)상의 고속 병렬 승산기의 구성)

  • Choi, Yong-Seok;Park, Seung-Yong;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.510-520
    • /
    • 2011
  • In this paper, we propose a new multiplication algorithm for primitive polynomial with all 1 of coefficient in case that m is odd and even on finite fields $GF(3^m)$, and compose the multiplier with parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $(m+1)^2$ same basic cells that have a mod(3) addition gate and a mod(3) multiplication gate. Since the basic cells have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $T_A+T_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.