• Title/Summary/Keyword: Finite field Multiplier

Search Result 109, Processing Time 0.029 seconds

Design and Implementation of Fast Scalar Multiplier of Elliptic Curve Cryptosystem using Window Non-Adjacent Form method (Window Non-Adajcent Form method를 이용한 타원곡선 암호시스템의 고속 스칼라 곱셈기 설계 및 구현)

  • 안경문;김종태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.345-348
    • /
    • 2002
  • This paper presents new fast scalar multiplier of elliptic curve cryptosystem that is regarded as next generation public-key crypto processor. For fast operation of scalar multiplication a finite field multiplier is designed with LFSR type of bit serial structure and a finite field inversion operator uses extended binary euclidean algorithm for reducing one multiplying operation on point operation. Also the use of the window non-adjacent form (WNAF) method can reduce addition operation of each other different points.

  • PDF

Efficient Serial Gaussian Normal Basis Multipliers over Binary Extension Fields

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2009
  • Finite field arithmetic is very important in the area of cryptographic applications and coding theory, and it is efficient to use normal bases in hardware implementation. Using the fact that $GF(2^{mk})$ having a type-I optimal normal basis becomes the extension field of $GF(2^m)$, we, in this paper, propose a new serial multiplier which reduce the critical XOR path delay of the best known Reyhani-Masoleh and Hasan's serial multiplier by 25% and the number of XOR gates of Kwon et al.'s multiplier by 2 based on the Reyhani-Masoleh and Hasan's serial multiplier for type-I optimal normal basis.

  • PDF

An Architecture of the Fast Parallel Multiplier over Finite Fields using AOP (AOP를 이용한 유한체 위에서의 고속 병렬연산기의 구조)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In this paper, we restrict the case as m odd, n=mk, and propose and explicitly exhibit the architecture of a new parallel multiplier over the field GF($2^m$) with a type k Gaussian period which is a subfield of the field GF($2^n$) implements multiplication using the parallel multiplier over the extension field GF($2^n$). The complexity of the time and area of our multiplier is the same as that of Reyhani-Masoleh and Hasan's multiplier which is the most efficient among the known multipliers in the case of type IV.

Low-Power and Low-Hardware Bit-Parallel Polynomial Basis Systolic Multiplier over GF(2m) for Irreducible Polynomials

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.570-581
    • /
    • 2017
  • Multiplication in finite fields is used in many applications, especially in cryptography. It is a basic and the most computationally intensive operation from among all such operations. Several systolic multipliers are proposed in the literature that offer low hardware complexity or high speed. In this paper, a bit-parallel polynomial basis systolic multiplier for generic irreducible polynomials is proposed based on a modified interleaved multiplication method. The hardware complexity and delay of the proposed multiplier are estimated, and a comparison with the corresponding multipliers available in the literature is presented. Of the corresponding multipliers, the proposed multiplier achieves a reduction in the hardware complexity of up to 20% when compared to the best multiplier for m = 163. The synthesis results of application-specific integrated circuit and field-programmable gate array implementations of the proposed multiplier are also presented. From the synthesis results, it is inferred that the proposed multiplier achieves low power consumption and low area complexitywhen compared to the best of the corresponding multipliers.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

A Fast Multiplier of Composite fields over finite fields (유한체의 합성체위에서의 고속 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.389-395
    • /
    • 2011
  • Since Elliptic Curve Cryptosystems(ECCs) support the same security as RSA cryptosystem and ElGamal cryptosystem with 1/6 size key, ECCs are the most efficient to smart cards, cellular phone and small-size computers restricted by high memory capacity and power of process. In this paper, we explicitly explain methods for finite fields operations used in ECC, and then construct some composite fields over finite fields which are secure under Weil's decent attack and maximize the speed of operations. Lastly, we propose a fast multiplier over our composite fields.

Fast-Serial Finite Field Multiplier without increasing the number of registers (레지스터수의 증가가 없는 고속 직렬 유한체 승산기)

  • 이광엽;김원종;장준영;배영환;조한진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.973-979
    • /
    • 2002
  • In this paper, an efficient architecture for the finite field multiplier is proposed. This architecture is faster and smaller than any other LFSR architectures. The traditional LFSR architecture needs t x m registers for achieving the t times speed. But, we designed the multiplier using a novel fast architecture without increasing the number of registers. The proposed multiplier is verified with a VHDL description using SYNOPSYS simulator. The measured results show that the proposed multiplier is 2 times faster than the serial LFSR multiplier. The proposed multiplier is expected to become even more advantageous in the smart card cryptography processors.

A Study on Construction of Multiple-Valued Multiplier over GF($p^m$) using CCD (CCD에 의한 GF($p^m$)상의 다치 승산기 구성에 관한 연구)

  • 황종학;성현경;김흥수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.60-68
    • /
    • 1994
  • In this paper, the multiplicative algorithm of two polynomials over finite field GF(($p^{m}$) is presented. Using the presented algorithm, the multiple-valued multiplier of the serial input-output modular structure by CCD is constructed. This multiple-valued multiplier on CCD is consisted of three operation units: the multiplicative operation unit, the modular operation unit, and the primitive irreducible polynomial operation unit. The multiplicative operation unit and the primitive irreducible operation unit are composed of the overflow gate, the inhibit gate and mod(p) adder on CCD. The modular operation unit is constructed by two mod(p) adders which are composed of the addition gate, overflow gate and the inhibit gate on CCD. The multiple-valued multiplier on CCD presented here, is simple and regular for wire routing and possesses the property of modularity. Also. it is expansible for the multiplication of two elements on finite field increasing the degree mand suitable for VLSI implementation.

  • PDF

An Arithmetic System over Finite Fields

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.435-440
    • /
    • 2011
  • This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fields. The addition arithmetic operation over finite field is simple comparatively because that addition arithmetic operation is analyzed by each digit modP summation independently. But in case of multiplication arithmetic operation, we generate maximum k=2m-2 degree of ${\alpha}^k$ terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for the purpose of performing above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesizing ${\alpha}^k$ generation module and control signal CSt generation module with A-cell and M-cell. Next, we constructing the arithmetic operation unit over finite fields. Then, we propose the future research and prospects.

Scalable Dual-Field Montgomery Multiplier Using Multi-Precision Carry Save Adder (다정도 CSA를 이용한 Dual-Field상의 확장성 있는 Montgomery 곱셈기)

  • Kim, Tae-Ho;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.131-139
    • /
    • 2008
  • This paper presents a scalable dual-field Montgomery multiplier based on a new multi-precision carry save adder(MP-CSA), which operates in both types of finite fields GF(p) and GF($2^m$). The new MP-CSA consists of two carry save adders(CSA). Each CSA is composed of n = [w/b] carry propagation adders(CPA) for a modular multiplication with w-bit words, where b is the number of dual field adders(DFA) in a CPA. The proposed Montgomery multiplier has roughly the same timing complexity compared with the previous result, however, it has the advantage of reduced chip area requirements. In addition, the proposed circuit produces the exact modular multiplication result at the end of operation unlike the previous architecture. Furthermore, the proposed Montgomery multiplier has a high scalability in terms of w and m. Therefore, it can be used to multiplier over GF(p) and GF($2^m$) for cryptographic applications.