• Title/Summary/Keyword: Finite element program

Search Result 2,114, Processing Time 0.027 seconds

Electromagnetic Forming Process Analysis Based on Coupled Simulations of Electromagnetic Analysis and Structural Analysis

  • Lee, Man Gi;Lee, Seung Hwan;Kim, Sunwoo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.215-221
    • /
    • 2016
  • We conducted a phased electromagnetic forming process analysis (EFPA) over time through a coupling of electromagnetic analysis and structural analysis. The analysis is conducted through a direct linkage between electromagnetic analysis and structural analysis. The analysis process is repeated until the electric current is completely discharged by a formed coil. We calculate the forming force that affects the workpiece using MAXWELL, a commercial electromagnetic finite element analysis program. Then, we simulate plastic behavior by using the calculated forming force data as the forming force input to ANSYS, a commercial structure finite element analysis program. We calculate the forming force data by using the model shape in MAXWELL, a commercial electromagnetic finite element analysis program. We repeat the process until the current is fully discharged by the formed coil. Our results can be used to reduce the error in data transformation with a reduced number of data transformations, because the proposed approach directly links the electromagnetic analysis and the structural analysis after removing the step of the numerical analysis of a graph describing the forming force, unlike the existing electromagnetic forming process. Second, it is possible to simulate a more realistic forming force by keeping a certain distance between nodes using the re-mesh function during the repeated analysis until the current is completely discharged by the formed coil, based on the MAXWELL results. We compare and review the results of the EFPA using the peak value of the forming force that acts on the workpiece (which is the existing analysis method), and the proposed phased EFPA over time approach.

Implementation of DSC Model for Clay-pile Interface Under Dynamic Load (동하중을 받는 점토-파일 접촉면 거동모사를 위한 DSC 모델의 수치해석적 이용)

  • Park, Inn-Joon;Yoo, Ji-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.93-104
    • /
    • 2003
  • The Disturbed State Concept (DSC) model, with simplified unloading/reloading formulation, is implemented in a nonlinear dynamic finite element program fur porous media named DSC_DYN2D. In this research, the DSC constitutive model is utilized using the HiSS model for relative intact (RI) part and the critical state model for the fully adjusted (FA) part in the material. The general formulation for implementation is developed. The cyclic loading tests from the field load test data on a pile segment were numerically simulated using the finite element program DSC_DYN2D and compared with field measurements and those from the previous analysis with the HiSS model. The DSC predictions show improved agreement with the field behavior of the pile compared to those from the HiSS model. Overall, the computer procedure with the DSC model allows improved and realistic simulation of the complex dynamic soil-structure interaction problems.

Effects of titanium and PEEK abutments on implant-supported dental prosthesis and stress distribution of surrounding bones: three-dimensional finite element analysis (티타늄 및 PEEK 지대주 소재가 임플란트 유지 수복물 및 주위 지지골 응력 분포에 미치는 영향: 3차원 유한요소해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.44 no.3
    • /
    • pp.67-75
    • /
    • 2022
  • Purpose: This study aimed to comparatively evaluate the stress distribution of bones surrounding the implant system to which both titanium and polyetheretherketone (PEEK) abutments are applied using a three-dimensional finite element analysis. Methods: The three-dimensional implant system was designed by the computer-aided design program (CATIA; Dassault Systemes). The discretization process for setting nodes and elements was conducted using the HyperMesh program (Altair), after finishing the design of each structure for the customized abutment implant system. The results of the stress analysis were drawn from the Abaqus program (Dassault Systèmes). This study applied 200 N of vertical load and 100 N of oblique load to the occlusal surface of a mandibular first molar. Results: Under external load application, the PEEK-modeled dental implant showed the highest von Mises stress (VMS). The lowest VMS was observed in the Ti-modeled abutment screws. In all groups, the VMS was observed in the crestal regions or necks of implants. Conclusion: The bones surrounding the implant system to which the PEEK abutment was applied, such as the cortical and trabecular bones, showed stress distribution similar to that of the titanium implant system. This finding suggests that the difference in the abutment materials had no effect on the stress distribution of the bones surrounding implants. However, the PEEK abutments require mechanical and physical properties improved for clinical application, and the clinical application is thought to be limited.

A study on the Development of Structural Analysis Program using Visual Basic (Visual Basic을 이용한 구조해석 프로그램 개발에 관한 연구)

  • 이상갑;장승조
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-222
    • /
    • 1995
  • The objective of this paper is to develop a finite element structural analysis program using VB(Visual Basic) which has been recently getting popular as development tools of application program for Windows. VB provides several functions to develop an application program easily by supporting event-driven programming method and graphic object as control data type. This system is an integrated processor including preprocessor, solver and postprocessor. Automatic mesh generation is available at preprocess stage, and graphic presentation of deformation and stress is also represented at postprocess one.

  • PDF

Ambient vibration testing of Berta Highway Bridge with post-tension tendons

  • Kudu, Fatma Nur;Bayraktar, Alemdar;Bakir, Pelin Gundes;Turker, Temel;Altunisik, Ahmet Can
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 2014
  • The aim of this study is to determine the dynamic characteristics of long reinforced concrete highway bridges with post-tension tendons using analytical and experimental methods. It is known that the deck length and height of bridges are affected the dynamic characteristics considerably. For this purpose, Berta Bridge constructed in deep valley, in Artvin, Turkey, is selected as an application. The Bridge has two piers with height of 109.245 m and 85.193 m, and the total length of deck is 340.0 m. Analytical and experimental studies are carried out on Berta Bridge which was built in accordance with the balanced cantilever method. Finite Element Method (FEM) and Operational Modal Analysis (OMA) which considers ambient vibration data were used in analytical and experimental studies, respectively. Finite element model of the bridge is created by using SAP2000 program to obtain analytical dynamic characteristics such as the natural frequencies and mode shapes. The ambient vibration tests are performed using Operational Modal Analysis under wind and human loads. Enhanced Frequency Domain Decomposition (EFDD) and Stochastic Subspace Identification (SSI) methods are used to obtain experimental dynamic characteristics like natural frequencies, mode shapes and damping ratios. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge was updated considering the material properties and boundary conditions. It is emphasized that Operational Modal Analysis method based on the ambient vibrations can be used safely to determine the dynamic characteristics, to update the finite element models, and to monitor the structural health of long reinforced concrete highway bridges constructed with the balanced cantilever method.

Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis

  • Albegmprli, Hasan M.;Cevik, Abdulkadir;Gulsan, M. Eren;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.259-277
    • /
    • 2015
  • The lack of experimental studies on the mechanical behavior of reinforced concrete (RC) haunched beams leads to difficulties in statistical and reliability analyses. This study performs stochastic and reliability analyses of the ultimate shear capacity of RC haunched beams based on nonlinear finite element analysis. The main aim of this study is to investigate the influence of uncertainty in material properties and geometry parameters on the mechanical performance and shear capacity of RC haunched beams. Firstly, 65 experimentally tested RC haunched beams and prismatic beams are analyzed via deterministic nonlinear finite element method by a special program (ATENA) to verify the efficiency of utilized numerical models, the shear capacity and the crack pattern. The accuracy of nonlinear finite element analyses is verified by comparing the results of nonlinear finite element and experiments and both results are found to be in a good agreement. Afterwards, stochastic analyses are performed for each beam where the RC material properties and geometry parameters are assigned to take probabilistic values using an advanced simulating procedure. As a result of stochastic analysis, statistical parameters are determined. The statistical parameters are obtained for resistance bias factor and the coefficient of variation which were found to be equal to 1.053 and 0.137 respectively. Finally, reliability analyses are accomplished using the limit state functions of ACI-318 and ASCE-7 depending on the calculated statistical parameters. The results show that the RC haunched beams have higher sensitivity and riskiness than the RC prismatic beams.

Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits (낮은 심도의 연약지반에 대한 비선형 지진응답해석)

  • Park, Hong-Gun;Kim, Dong-Kwan;Lee, Kyung-Koo;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.1-12
    • /
    • 2010
  • This study presents a finite element analysis method that can accurately evaluate the nonlinear behaviour of structures affected by shallow soft subsoils and the soil-structure interaction. A two-dimensional finite element model that consists of a structure and shallow soft subsoil was used. The finite element model was used for a nonlinear time domain analysis of the OpenSees program. A parametric study was performed to investigate the effects of soil shear velocities, earthquake input motions, soft soil depth, and soil-structure interaction. The result of the proposed nonlinear finite element analysis method was compared with the result of an existing frequency domain analysis method, which is frequently used for addressing nonlinear soil behavior. The result showed that the frequency domain analysis, which uses equivalent secant soil stiffness and does not address the soil-structure interaction, significantly overestimated the response of the structures with short dynamic periods. The effect of the soil-structure interaction on the response spectrum did not significantly vary with the foundation dimensions and structure mass.

A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis (유한요소해석을 이용한 Gantry Robot의 동특성 및 측정 결과와의 상관관계 연구)

  • Koh, Man Soo;Kwon, Soon Ki;Lee, Soek
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.269-274
    • /
    • 2015
  • According to the development of IT industry, prevalence of AOI equipment is spreading, and also requiring the high resolution of the camera used in the equipment. The weight of the camera is increased to obtain a high resolution, and thus increases the vibration displacement is a problem occurring in the picturing, camera motion control also becomes difficult. In this study, using a finite element analysis program NX/NASTRAN, the transient response of the camera was analysed which is subjected to an impact force due to inertia. The finite element analysis result is correlated with laser interferometer measurement. When AOI equipment is restructuring, the correlated finite element analysis model can be used to verify the authenticity of the new design.

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.