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Implementation of DSC Model for Clay-pile
Interface Under Dynamic Load
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Abstract

The Disturbed State Concept (DSC) model, with simplified unloading/reloading formulation, is implemented in
a nonlinear dynamic finite element program for porous media named DSC_DYN2D. In this research, the DSC
constitutive model is utilized using the HiSS model for relative intact (RI) part and the critical state model for
the fully adjusted (FA) part in the material. The general formulation for implementation is developed. The cyclic
loading tests from the field load test data on a pile segment were numerically simulated using the finite element
program DSC_DYN2D and compared with field measurements and those from the previous analysis with the HiSS
model. The DSC predictions show improved agreement with the field behavior of the pile compared to those from
the HiSS model. Overall, the computer procedure with the DSC model allows improved and realistic simulation

of the complex dynamic soil-structure interaction problems.

Keywords : Disturbed State Concept (DSC), Dynamic, Finite element program, Nonlinear, Soil-structure interaction,

Unloading/reloading
1. Introduction the behavior of structures such as building, roads,
bridges, dams and tunnels. Safe and economical designs
Geological materials such as soils and rocks are of these structures require a good understanding of
studied extensively due to their important roles in behavior of the geologic materials under different
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loading conditions.

Traditional approach to these geotechnical engineering
problems is geared towards empirical design techniques.
These methods are based on years of experience with
particular materials and types of loading, and valid for
limited conditions.

Essential for realistic prediction of the behavior of
geotechnical structures using numerical methods is an
appropriate constitutive law governing the stress-strain
behavior of geomaterials under different loading con-
ditions. Much effort has been given to the subject of
constitutive law of geomaterials due to their importance
and complexity. Besides the elasticity constitutive laws,
many plasticity and damage based constitutive models
have been developed, e.g. those based on von Mises,
Drucker-Prager, and critical state concept,.the Hierarchical
Single Surface (HiSS) plasticity model, the classical
continuum damage model and the Disturbed State Concept
(DSCO).

The Disturbed State Concept(DSC) (Desai, 1992) has
been developed recently as a constitutive modeling
approach. It has been successfully verified to test data
for interfaces (Ma, 1990; Desai and Ma, 1992), undrained
clay (Katti and Desai, 1991, 1995), cohesionless soils
(Armaleh and Desai, 1994), and saturated cohesionless
sand (Park and Desai, 2000).

This research is intended to develop finite element
procedure based on the DSC model to solve geotechnical

engineering problems under dynamic loading conditions.
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Fig. 1. Schematic of growth of the fully adjusted state (after
Desai, 1992)
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2. Disturbed State Concept Model

The Disturbed State Concept(DSC) model has been
successfully used in predicting the behavior of many
materials such as rock interfaces, sands and clays. In the
DSC, the material is assumed to transform continuously
and randomly from the relatively intact (RI) state to fully
adjusted state (FA) (Fig. 1) under external excitation. The
transformation involves microstructural changes that cause
microcracking and damage. The fully adjusted state is an
asymptotic state that can not be further disturbed. Hence,
the observed response (or average stress state) of the
material is expressed in terms of the response of
relatively intact state which excludes the effects of
disturbance and that of fully adjusted state (FA). The
transformation of material from RI state to FA state is
defined by the disturbance function D, as shown in
Fig. 2. |

2.1 Relative Intact State

The relative intact (R]) state is an idealized state which
excludes the disturbance effects. Many -elasto-plastic
model can be used as RI model. Here, the basic model
in the HiSS Family, &, model, is used to represent the
behavior of material in the RI part. The §, model is
based on associative plasticity and isotropic hardening.
The yield function in the ¢, model is given as
(Wathugala and Desai, 1990)

F= p]z” —F,F =0 (1)
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Fig. 2. Schematic of a stress-strain curve for disturbance function
(after Park, 1998)
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Fp, is the basic function of the yield surface in the
J1—V J2p space, (Fig. 3) with constant S; and F; is the
shape of the yield function in the octahedral space, (Fig.
4) with constant J;, where S; is stress ratio and Jy, Jop,
and Jip are the lst invariant of stress tensor o, 2nd
invariant of deviatoric stress tensor and 3rd invariant of
deviatoric stress tensor, respectively. p. is the atmospheric
pressure, 4 is Lode angle, and 7, 8 m (= -0.5) and n
are material parameters. « is the hardening function; its

basic form is given by

a=-2 (6)

where a; and n; are material parameters and & is

trajectory of the plastic strain expressed as

6= [Vdelde), )
de=\ de’de?, ®

where de? is the tensor of incremental plastic strain.

In the plasticity theory for small strain problems, the

V7

A

Yield Surfaces Ultimate Surface

A nF
def = A

I ' o>z >as> 0

3R

Fig. 3. Yield surface in 7,—V J,, plane defined by F, (after Park,
1998)

incremental total strain is decomposed into two parts,
incremental elastic strain de§; and incremental plastic

strain de?, therefore
de j=dej+de} ®

The elastic strain is related to the stress by the elastic

constitutive relation as
do 5= C jude i (10)

Using Eq. (9), Eq. (10) and plasticity theory, the
incremental form of the stress-strain relation for the RI

state is found as

doj= Cude y a1
where
Coun &4E= Csu

nge1= Cz?jkl_ oF p‘; _ oF (12)

2.2 Fully Adjusted State

The fully adjusted state (FA) of the material is an
asymptotic state in which material may not be further
disturbed. For geotechnical materials, the final void ratio
¢’, the material parameter attained in a shear test, is only

related to hydrostatic stress J{ at the critical state (see

Fig. 5) as

Fig. 4. Yield surface in the octahedral plane defined by Fs (after
Wathugala, 1990)
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Ii=3p e (25 (13)

where €™ is the critical void ratio when J,.=3p, A is
a material constant and superscript 'c' denotes the
quantities in the critical state. At the critical state, the

maximum shear stress material can carry is given by
V= m/{ (14)
where “m is a material parameter.

If m=( in Eq. (14), the material in FA can only
carry hydrostatic stress like constrained liquid (Desai,
1995). Egs. (13) and (14) for the FA state are reduced

as
J5=3p exp (L35 (15)
v ]§D:0

(Sg=0) (16)

Egs. (13) and (14) can also be reduced to form the
classical damage model. If m=(, ef=>co and A=I,

Egs. (13) and (14) can be expressed as

Ji=0 17)
V75=0 (18)

Hence, the material in FA can carry neither shear
stress nor hydrostatic stress like void. This represents the

classical damage model (Kachanov, 1986).

2.3 Disturbance Function D

The disturbance function D can be defined as
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D=D (1—exp(— A£%) (19

where A, Z and Dy, (< 1) are material parameters, and
&p is the trajectory of deviatoric plastic strain. D is
defined as scalar here, but for the disturbance to simulate
crack development in materials like concrete, D needs to
be defined as a fensor. The disturbance increases as the
deformation increases. At the beginning of the loading,
D is zero. When D approaches unity, the material is in
the critical state (Park, 1997).

2.4 Relations of Average Stress to Stresses in
Rl and FA States

There is a material element with thickness t subjected

to loading. The total force, F, on the total area A is
F=F'+F* 20)

where F' and F° are the forces on the intact area A’ and
the fully adjusted area A°, respectively; 'i' denotes intact
and 'c' denotes critical (fully adjusted). Dividing each
term in Eq. (20) by the nominal area A leads to

FiAi FcAc
AA T A°A @1

From the disturbance function theory (Park, 1997),

_A° . A" i_ F' e F°
D=~ 1, 1=D="4, 0 A,-anda o average

stress leads to

oci=(1—D)ojy+ Do (22)

where ¢4 o} and ¢f are the average (observed) stress,

the stress in the intact part and the stress in the fully



adjusted part, respectively. Contracting the index of
Eq.(22) gives

Ji=Q1-DJi+DJ§ (23)

V7= —DW i+ DV 75 (24)

2.5 Incremental Stress Relations
Incremental Stress Relation during Virgin Loading

The incremental form of the stress relation can be

found by differentiating Eq.(22) as
do%=(1—D)dos+ Ddo§+ dD(c5— o) (25)

For deriving final average stress in incremental form,
dol, dof and dD need to be defined under virgin
loading.

By using Eq.(11), do’ in intact state can be expressed

as
do jy= C fyde y (26)

From the critical state concept, do in fully adjusted

state can be defined as

dd i M i d€ k/e+ Nz]klde Rl (27)
where
Vi 3

igt
S ijS mn

N iR \/']— (C ikl 3 ) ,,C mnkl) ‘%‘ C f:t)nkl (29)

The dD term is evaluated by differentiating Eq.(19) as

dD= de =D Ae “¥zel g, (30)

E

where

of? GF C ukld5 K

dED=(n8pqngm)W oF . o aF 31
aamn Cmm;tnst as

Hence dD= R yde (32)
where
—Atbez-1 @ @ \12 gf Cnee n
Rk1=DuA€ DZED (nqunqu) aF ce a_ aF (33)
ao. mnstn st 35

From substituting Eq.(26), Eq.(27) and Eq.(32) into
Eq.(25), the average stress in incremental form is finally

obtained as

do=(1
+ (05— 0LR pde iy (34)

— D)C jjude y+ DM 56 yde i1+ DN jude iy

The strain in RI part and FA part are usually different.
Assume de §=Bde’; and de ;= B,de ¢, where B, and
B, are two scalar numbers. Then Eq.(34) can be

rewritten as
doé=C%Fde (35)
where

CH‘=—D)C B2+ DM 36 4B 182+ DN juB2

+ (05— 0R ub (36)

B, and B, are defined by using one of the following
assumptions:
a) Assumption 1: g,=p,=1 for undrained cases, since

there is no volume change de§=0. Thus
{de ) ={de’} ={de*} 37N

a) Assumption 2: dJ¢= dJ} for more general cases. Thus

B8, and @B, are calculated as

ep a .
Bi= jcc"’f’d”’ (de=pilde)  (8)
/1‘ (1+eg)de?

b= Tmpras,  (ImaAed 09

where 0 is the interpolation factor (0<68<1). Assumption

1 is adopted for deriving CZ3-.
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Incremental Stress Relation during Unloading/Reloading

During unloading or reloading (Fig. 6), the stress in
RI part is given by

doly= C i dey (40)

where C JF is unloading or reloading constitutive matrix

for RI part.

It is assumed that during unloading or reloading, the
ratio of shear stresses in RI state and in FA state remains
constant, that is, it keeps the value at the beginning of
the unloading. That is

VIip

7=i = k= constant @1
Jan

Thus ¢ can be defined as
c__ c _1 c - i _,L c
05=SyT 318 j=k1Sy+5J10; (42)
Therefore

do=dS 5 dJf0 y= k1dS 5 dJi0 s

:kl(cﬂf_%axyczl;f;l)f;l‘*'%3,;‘]/1—1(1+eo)d€fi (43)

where \ is a critical state parameter as defined before.
Since dD=0 during unloading and reloading. Eq.(25) can

be rewritten as

A Simplified unloading
and reloading slope

Virgin loading

Reloading

Unloading

-p» €

Fig. 6. Stress-strain curves during unloading/reloading
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do§= (1= D)C Y de j+ Dty (C 4 =% 8,4C 1hidde b

+-Los, Ll egaes (44)

where CYF is replaced with unloading matrix during

unloading and reloading matrix during reloading.

3. Implementation of the DSC Model
3.1 Basic Finite Element Equations

The basic equations in FEM are derived from the
principle of virtual work. The principle of virtual work
requires that for an arbitrary compatible (virtual) displace-
ment, the work done over the system must be zero
(Bathe, 1982). That is

| 188} (o )av= [ {8 (X)aV+ f L8 (TYdS

+2 Aou ,'}T{ﬁi} (45)

where V is the volume of the domain, {8u} denotes the
virtual displacement, {8€} is virtual strain vector derived
from the virtual displacement, {0°}is stress vector in the
domain, {X}, {T} and {P;} are the vectors of body force,
the surface traction and concentrated load, respectively,
and superscript "T" denotes transpose.

The continuum is discretized into an assemblage of
individual elements. Elements are defined and connected
to adjoining elements by nodes. The displacements and
other primary variables within the elements are approxi-
mately related to the nodal values by using interpolation
(or shape) functions. Thus the total degree-of-freedom of
the system is reduced to that of the nodes, e.g. the nodal

displacements {q}. Then, in each element:

{u’}=[N"]{q} (46a)

{e}=[B"l{q} (46b)
Hence

{8u”}=[N"]{8q} (47)

{8e°}=[B]{8q} (48)



where [N°] is the shape function in an element (Desai,
1979), [B°] is the strain-displacement transformation
matrix for the element.

Substitution of Eq.(47) and Eq.(48) into Eq.(45) and

assembly of all elements give

(647S . [, 1B {odV

— (60 "S L [ [N T0av+ [ LN T{T)aS)+(aH P (49)

Dropping the subscript "e" and the arbitrary displace-
ment, {dq}, leads to

[, 1B (aav=(Q} (50)
where
(@= [ IMT(x)av+ [ [MTTds+(F  (51)

represents all external loads of the system.

Eq.(50) is a system of nonlinear equations as {0"} is
a nonlinear function of strain (displacements). There are
many techniques to solve nonlinear equations. In this
research, the General Newton-Raphson method is used.
In this method, the load is divided into small load steps
(or time steps in a dynamic problems).

For the stress-strain relations, the observed stress in the

DSC model is expressed in the matrix notation as

{do3}=(1— D) C Hde’} + D{[ M) de }
+[N{de P +{o°— o HR™Hde}  (52)
Some assumptions are needed for strains in different
parts in order to solve the indeterminate (not well known
conditions) equations. The assumptions can be replaced

if physical relations are found theoretically or through

laboratory experiments. Eq.(35) can be rewritten as
{do®}=[C"*Nde*}=[C™ Bl da}) (53)

where [CDSC] is the material matrix. Finally, finite

element equation is derived as

[ IBITICP U Blav]de i} =(Q et~ [ [B) T{ai}av (54)

The right side of Eq.(54) is the unbalanced load from
the stresses of the last step up to this step.

3.2 Computational Algorithms

The computational algorithms are expressed and
summarized for implementation of DSC model in
dynamic finite element program DSC_DYN2D.

Stepl: Assumption for initial conditions.
{o%={0o¢} {el={ef} (55)
D=0, {o}={0% (56)

o Jip I
"“‘(7 <fi>2<1—ﬂs,>’”)(z)a) ©7

For hardening function Eq.(6),

a
71
(4L
=) (58)
Step2: Set load/time increment number n=0.
Step3: Set iteration number r=0.
Step4: Calculate the initial unbalanced load for this load
step.

(FudP=(Que)— [ [BI {02} Pav  (59)
Step5: Calculate stiffness.

[K17= [ [B"[C"17Blav (60)

Step6: Calculate incremental displacements and incre-

mental strains.

{da} " =[K,] YF .} (61)
{de’}” =[Bl{dg) (62)

Step7: Calculate strains in the intact part {de’} and in
the fully adjusted part {de°} by using Eq.(37)
with assumption 1 or Eq.(38) and Eq.(39) with
assumption 2.

Step8: Calculate stresses in the intact part and in the
fully adjusted part.
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{do?}=[C?de} (63)
{a "D} = (0"} +(do "7} (64)

Drift correction (Potts and Gens, 1985; Wathugala and
Desai, 1990) is performed here for {¢%} to stay on or
inside of the yield surface. Stresses in FA state are

calculated as follows

ej—e’

Jf=31>aexr)( y

) with assumption 1 in step 7 (65)
or Ji=J]}i with assumption 2 in step 8 (66)

The deviatoric stress in the critical state part is
calculated by using Eq.(14).
Step9: Update D, {59}

dep=\ {dE*"}"{dE"") (67)

ESTV=¢60+de, (68)
dD=(D,— D)AZE4 ds (69)

(do®}? = (1 - D){do"} + D{do )+ dD(c5— %) (70)

{Ua}(r+1)___{O_a}(r)_}_{do,a}(?) (71)

Step10: Set y=»+1, If »>» ., g0 10 step 13.

Stepl1: Calculate unbalanced forces.
{(Fro}={Qu}— [ [BI{05")av (72)

Step12: Check convergence.

Port Neches
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Sabine River
Lighthouse

Sabine N
Test Site

Jetty Road

Gulf of Mexico

Sabine Test Site

Fig. 7. The site of instrumented pile tests, Sabine, Texas
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| F iyl
| Fol
is achieved at this load step and go to step 13.

If |Fl. | =kl Fi4 | (k<l, tolerance defined

If <e=10 "?~10 "% convergence

by user), no improvement or improvement is not
sufficient. Go to step 5 to update stiffness
matrix. Otherwise, go to step 6.
Stepl13: Set n=n+1. If #<{n .y g0 to step 3.
Stepl4: Stop.

4. Simulation of Instrumented Pile Tests
4.1 General

The finite element analysis with the DSC model as
developed in this research is verified by back predicting
the observed behavior of the instrumented pile test at
Sabine, Texas (The Earth Technology Incorporated,
1986) and the results using DSC model are compared
with those from the field tests and from prediction using
the HiSS model (Wathugala and Desai, 1989; Desai and
Wathugala, 1987). The Earth Technology Corporation
has performed six field tests at Sabine, Texas (Fig. 7)
with the instrumented pile segments (probes) of diameter
4.37cm (X-probe) and 7.62cm. For the purpose of this
analysis, only the 7.62cm pile under dynamic loading is
considered, The testing system consisted of a loading
system, computer controlled data acquisition system, and

instrumented pile segments. Detailed description of these
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Hydraulic Lines
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Support Cotumns
‘%—— Turn Buckles
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Wood Railroad Ties

(€~ Screw Anchors

e

T 8" I Casing
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Oiameater Segment Pite

A%

=T

| E———

Fig. 8. Schematic diagram of portable loading system (After
Earth Technology Corporation, 1986)



parts and testing procedure are given in The Earth
Technology Corporation (1986) and report (Wathugala
and Desai, 1990). A schematic of loading system is given
in Fig. 8. The displacement of the hydraulic ram is
transferred to the probes by the N-rods connecting them.
The shear transfer from the pile segment to the soil is
obtained by measuring the difference between axial loads
at two load cell in the pile segment.

The displacement-controlled tests of the 7.62cm pile
probe were numerically simulated using the finite element
program DSC DYN2D with the DSC model. Material
parameters for interface were calibrated and found from
Rigby and Desai (1996) and those for the clay were
adopted from Katti and Desai (1991). Those materials

(interface and clay) properties are summarized in Table 1.

Table 1. Material parameters used for finite element analysis

(DSC model)
Clay Interface
E 10350 kPa | 4300 kPa
v 0.35 0.42
y 0.047 0.077
B 0 0
Rl state m -0.5 -0.5
n 2.8 2.6
3R 0 0
a 0.00010 | 0.00041
71 0.78 2.95
A 0.169 0.298
FA state e 0.903 1.359
“m 0.069 0.123
' D 0.75 1.00
Disroance A 1730 | 0816
Z 0.3092 0.4180
*EBU- 34500 kPa | 4300 kPa
Unloading and *eEU 3450 kPa | 400 kPa
Reloading
ey 0.005 0.031
Permeability 2.39x107"° m/sec
Density of soil 2.65Mg/m?
others Bulk modulus of soil 10° kPa
Bulk modulus of water 10° kPa
Density of water 1.0 Mg/m®

*E®% is the slope of the stress and strain curve at the beginning
of unloading.

+»*E®% s the slope of the stress and strain curve at the end of
unloding.

The finite element mesh used for all the simulation
stages, (Fig. 9) is the same as that used in the previous
HiSS analysis (Desai and Wathugala, 1987), except that
the thin-layer elements are used for the pile-clay interface
while in the previous analysis, there were no interface
elements. There are totally 192 elements and 225 nodes.
The inner elements in contact with pile are assigned as
interface elements with a thickness t=1.4mm. The pile is
assumed rigid, so the pile movements are simulated as
prescribed displacements of nodes in contact with pile.
The displacement boundary conditions are also shown in
Fig. 9. Since shear deformations in saturated clay are
almost volume conserved, "shear locking" was observed
when eight node elements with four Gauss integration
points are used. Therefore, four node elements with one
Gauss integration point were used for both solid and fluid
in all the finite element analyses here.

The field tests were simulated in stages as shown
schematically in Fig. 10. In this research, each stage uses
the results of the previous stages as the initial conditions
and passes its results to the next stage as input for that
stage. The main purpose of this research is to verify the

finite element procedure with the DSC model by simula-

3.2m | x"—1
B
e A
Node 1 ¥
Boundary conditions:
Boundary |x-direction| y-direction
AB free free
=) BC fixed free
8] 3 CD fixed fixed
ol &
il 2] DA fixed free
Pile segment EF
1,895 m
* -
S i Details
yd
g // F
g I El t 121
o5 {
\
\
\\
A N
c D N E
Node 225 =
Eilement 192

Fig. 9. Finite element mesh
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Fig. 10. Schematic representation of the different stages in the numerical simulation

ting the pile under cyclic loading. Therefore, the only
results from numerical simulations of cyclic loads are

presented.

4.2 Simulation of One—-way Cyclic Load Test

The numerical simulations with the DSC model of the
one way cyclic load test on the 3 inch (7.62¢cm) probe
are presented and compared with field measurements and
the HiSS model results from published report (Wathugala
and Desai, 1990). The vertical displacements as measured
in the field are applied to the nodes in contact with pile
segment (from E to F in Fig. 9) in 14 time steps. Results
from finite element simulation are compared with field
measurements and predictions from HiSS model in Figs.
11, 12 and 13.

Shear transfer from the current analysis with DSC
model is calculated by accumulating the induced vertical
forces at the nodes with the prescribed displacements.
While predicted shear transfer from the HiSS model is
lower than that from the field measurements, DSC gives
much closer prediction of the shear transfer to the field
data, This may be due to the different model and
parameters used in the analysis. The degradation of peak
value of the shear transfer is also predicted by DSC
model. The proposed unloading and reloading models
give greater strain during the unloading, but the shapes
of reloading and unloading loop are predicted well.
Predicted pore pressures show an initial increase and then
stable pore pressure which are higher than those from the
field test data.

4 3 Simulation of Two—way Cyclic Load Test

Two way cyclic load tests are simulated using the
finite element procedure with the DSC model and are

compared with field measurements and the HiSS model

102 Jour. of the KGS, Vol. 19, No. 3, June 2003

results in this section. Five field cycles in compression

and tension to failure are performed on the 3-inch probe.
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Fig. 11. Shear transfer vs. pile displacement for one-way cyclic
load test

30 7

Shear transfer, kPa

0 500 1000 1500 2000 2500

Time, seconds

—— DSC —— Field ---- HiSS

Fig. 12. Shear transfer vs. time for one-way cyclic load test
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Fig. 13. Pore pressure vs. time for one-way cyclic load test
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Fig. 14. Shear transfer vs. pile displacement for the two-way
cyclic load test
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Fig. 16. Pore pressure vs. time for the two-way cyclic load test

The vertical displacements as measured in the field are
applied to nodes in contact with pile segment (from E
to F in Fig. 9) in 801 time steps. Results from the finite
element analysis are compared with field measurements
and predictions from HiSS model in Figs. 14, 15, 16, 17
and 18.

Predicted values of shear transfer vs. pile displacements
are compared in Fig. 14. The DSC prediction shows good
agreement with the field behavior and improvement over
the HiSS prediction. The DSC also predicts degradation
between cycles, but within one cycle the predicted
degradation (softening) is not much as in the field
measurement. Proposed unloading and reloading schemes
perform well in this analysis. Fig. 16. shows the predicted
variation of pore pressure with time from field data. The
predicted values are higher than the measures values, but

the trends are the same with slight increase in both cases.
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Fig. 15. Shear transfer vs. time for the two-way cyclic load test
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Fig. 17. Total horizontal stress vs. time for the two-way cyclic
load test
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Fig. 18. Effective horizontal stress vs. time for the two-way
cyclic load test

Total horizontal stresses did not change much during the
cyclic load tests, (Fig. 17). Predictions agreed well with
field measurements here. Effective horizontal stresses did

not match well at the beginning of the test, as in the
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HiSS prediction, but became very close at the end of the
test (Fig. 18).

5. Conclusions

The Disturbed State Concepts model, with HiSS model
as the intact state and critical state as the fully adjusted
state, is developed and implemented in the two phase
dynamic finite element program, DSC_DYN2D. The
applicability of DSC model has been demonstrated by
back predicting field behavior of cyclic axially loaded
pile segments in a saturated marine clay.

The unloading/reloading models proposed in the study
are simple yet give the realistic prediction of unloading
and reloading behaviors of the geomaterials.

It is shown that the finite element program DSC
DYN2D is suitable for the consolidation and two phase
dynamic analyses for the geotechnical engineering
problems. It can be used to solve the soil, soil-structure
interaction and structure problems in saturated condition

under dynamic loading.
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