• Title/Summary/Keyword: Finite element methods

Search Result 2,239, Processing Time 0.027 seconds

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

Application of welding simulation to block joints in shipbuilding and assessment of welding-induced residual stresses and distortions

  • Fricke, Wolfgang;Zacke, Sonja
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.459-470
    • /
    • 2014
  • During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.

Structural Analysis of Cable-Stayed Bridge by Block Method Using Personal Computer (개인용(個人用) 컴퓨터를 이용(利用)한 사장교(斜張橋)의 구조분할(構造分割) 해석방법(解析方法))

  • Park, Chun Hyok;Yang, Sung Hyeun;Han, Jai Ik;Park, Chan Keo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 1994
  • This paper discusses the block method on cable stayed bridge. The block method is one of the structural analysis methods, and it calculates the sectional forces and the displacements by combining results of several sub-structural system after analyzing each divided structure by means of finite element method. The block method has two branches, one is based on the force method and the other is based on the displacement method. We can select one of two methods by considering structural stability of divided structures. The conclusion gives some thoughts about cable stayed bridge analysis using this block method. Those are as follows. First, the results of analysis on divided structural system are consistent with those of analysis on global structural system. Second. saving memory volume of computer, we can analyze the complicated multi-cable stayed bridge on personal computer.

  • PDF

Study on Hydroelastic Analysis of LNGC Cargo by Global-Local Analysis Technique (전역-국부 해석기법에 의한 LNG 운반선 화물창의 유탄성 해석에 관한 연구)

  • Park, Seong-Woo;Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.83-92
    • /
    • 2007
  • There are many numerical methods to solve large-scale fluid-structure interaction(FSI) problems. However, these methods require very fine mesh to achieve the reasonable numerical accuracy and stability due to the concentrated and volatile hydrodynamic pressure caused by the liquid sloshing. Consequently, the numerical analysis targeting for the long-period time response with the desired numerical accuracy Is very highly time-consuming. The aim of this paper is to suggest a new method to analyze the hydroelastic behavior of the LNGC containment by using the global-local numerical approach. The reliability of the presented method is firstly examined, and then its efficiency is demonstrated by presenting that the long-period local responses of the LNGC containment are obtained with relatively short CPU time.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

Comparison of various methods to obtain structural vibration for vibro-acoustic noise (구조 방사 소음의 해석을 위한 구조물의 진동 획득 방법의 비교)

  • Wang Se-Myung;Shin Min-Cheol;Koo Kun-Mo;Kim Dae-Sung;Bae Won-Ki;Kyong Yong-Soo;Kim Jung-Seon;Kook Jung-Hwan;Thuy Tran ho Vihn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.607-611
    • /
    • 2006
  • There are several methods to obtain structural vibration for analysis of vibro-acoustic noise. First of all, vibration data can be obtained through the structural analysis using finite element method. Although this method has no need to experiment, the analysis result is unreliable when the structure and the vibration source is complex to model exactly. The second method is to measure vibration using a number of sensors. The analyzed vibro-acoustic noise with directly measured data is setting morereliable when the number of data acquisition points is getting larger. However, it requires large amount of time and effort to measure all vibration data on every node especially when the size of vibrating structure is large. The Modal Expansion Method(MEM), which uses mode information and measurement data, has been introduced to compensate their limits. With a relatively small number of measurement data, the reliable structural vibration for vibro-acoustic noise can be obtained using this semi-analysis method. Although MEM gives reliable result, it is restricted by the number of modes and measurement points. In this paper, structural analysis, direct vibration measurement method and MEM are compared using the simple aluminum box model. Furthermore, the washing machine case is also provided as a comparative example. The Laser Doppler Vibrometer(LDV) was used instead of contact type accelerometer to get vibration data.

  • PDF

Gaussian Kernel Smoothing of Explicit Transient Responses for Drop-Impact Analysis (낙하 충격 해석을 위한 명시법 과도응답의 가우스커널 평활화 기법)

  • Park, Moon-Shik;Kang, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.289-297
    • /
    • 2011
  • The explicit finite element method is an essential tool for solving large problems with severe nonlinear characteristics, but its results can be difficult to interpret. In particular, it can be impossible to evaluate its acceleration responses because of severe discontinuity, extreme noise or aliasing. We suggest a new post-processing method for transient responses and their response spectra. We propose smoothing methods using a Gaussian kernel without in depth knowledge of the complex frequency characteristics; such methods are successfully used in the filtering of digital signals. This smoothing can be done by measuring the velocity results and monitoring the response spectra. Gaussian kernel smoothing gives a better smoothness and representation of the peak values than other approaches do. The floor response spectra can be derived using smoothed accelerations for the design.

Experimental Study on Evaluation of Fatigue Crack Growth Rate of Steel Plates using Crack Opening Displacement (COD(Crack Opening Displacement) 측정을 통한 강재의 피로균열진전속도 추정에 관한 실험적 연구)

  • Kim, Kwang-Jin;Kim, In-Tae;Ryu, Yong-Yeol
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.589-597
    • /
    • 2010
  • Steel structures have a higher probability of being damaged by fatigue than by other causes of deterioration. As such, their maintenance to prevent fatigue damage is essential to sustain their safety and performance during their service period. In their maintenance, the current state of their fatigue cracks must be assessed to determine appropriate reinforcement methods and the suitable time intervals of periodic inspections when fatigue cracks are detected. Determining the crack growth rate is a successful method of predicting fractures, but it requires technical knowledge on fracture mechanics and experience in numerical methods and software for finite element analysis. In this study, a fatigue crack growth test on through-thickness cracked steel plates was conducted to assess the crack growth rate without superior technical knowledge and experience. The relationship between the Crack Opening Displacement (COD) and the crack growth rate was found in relatively long fatigue cracks.

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Contaminant transport through porous media: An overview of experimental and numerical studies

  • Patil, S.B.;Chore, H.S.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.45-69
    • /
    • 2014
  • The groundwater has been a major source of water supply throughout the ages. Around 50% of the rural as well as urban population in the developing countries like India depends on groundwater for drinking. The groundwater is also an important source in the agriculture and industrial sector. In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use and contamination. A good planning and management practices are needed to face this challenge. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface environment. It is obvious that the contaminant source activities cannot be completely eliminated and perhaps our water bodies will continue to serve as receptors of vast quantities of waste. In such a scenario, the goal of water quality protection efforts must necessarily be the control and management of these sources to ensure that released pollutants will be sufficiently attenuated within the region of interest and the quality of water at points of withdrawal is not impaired. In order to understand the behaviour of contaminant transport through different types of media, several researchers are carrying out experimental investigations through laboratory and field studies. Many of them are working on the analytical and numerical studies to simulate the movement of contaminants in soil and groundwater of the contaminant transport. With the advent of high power computers especially, a numerical modelling has gained popularity and is indeed of particular relevance in this regard. This paper provides the state of the art of contaminant transport and reviews the allied research works carried out through experimental investigation or using the analytical solution and numerical method. The review involves the investigation in respect of both, saturated and unsaturated, porous media.