DOI QR코드

DOI QR Code

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis

최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석

  • Yang, Sunmi (Department of Pedodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Seon-mi (Department of Pedodontics, School of Dentistry, Chonnam National University) ;
  • Choi, Namki (Department of Pedodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Jae-hwan (Department of Pedodontics, School of Dentistry, Chonnam National University) ;
  • Yang, Sung-Pyo (Department of Bio and Brain Engineering, KAIST) ;
  • Yang, Hongso (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 양선미 (전남대학교 치의학전문대학교 소아치과학교실) ;
  • 김선미 (전남대학교 치의학전문대학교 소아치과학교실) ;
  • 최남기 (전남대학교 치의학전문대학교 소아치과학교실) ;
  • 김재환 (전남대학교 치의학전문대학교 소아치과학교실) ;
  • 양성표 (KAIST 뇌공학 및 의공학과) ;
  • 양홍서 (전남대학교 치의학전문대학교 보철학교실)
  • Received : 2018.10.22
  • Accepted : 2018.12.06
  • Published : 2018.12.31

Abstract

Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

목적: 다양한 형태의 공동 설계 및 재료를 이용한 하악 대구치의 치아 구조 및 intracoronal 수복물에서 발생하는 응력 분포 및 최대 von Mises 응력을 분석하고자 하였다. 연구 재료 및 방법: 콤포지트레진 및 금으로 수복한 통상적 교합면 와동과(OR-C, OG-C) 인접면 와동(MR-C, MG-C) 및 콤포지트레진으로 충전한 최소 침습적 와동을 갖는 교합면 와동(OR-M) 및 인접면 와동(MR-M)의 형상을 하악 삼차원 입체 모델로 설계했다. 저작력을 부여하기 위해 총 교합력 200 N의 정적 축 방향 하중을 10개의 교합 접촉점에서 치아에 적용했다. 유한 요소 해석은 교합 하중에 의해 생성 된 응력 분포를 예측하기 위해 수행되었다. 결과: 최소 침습적 설계를 가진 수복물은 통상적 와동 설계(341.9 MPa - 397.2 MPa)에 비해 von Mises 응력(OR-M 모델: 26.8 MPa, MR-M 모델: 72.7 MPa)의 값이 현저하게 낮았다. 치아 내부에서 최대 von Mises 응력의 크기는 통상적 와동 설계(372.8 - 412.9 MPa) 및 최소 와동 설계(361.1 - 384.4 MPa) 모델에서 유사했다. 결론: 최소 침습성 모델은 수복물 중에서 최소의 von Mises 응력이 생성되었다. 법랑질 내에서는 최대 von Mises 응력이 최소 공동 설계와 기존 설계의 모델에서 유사한 크기로 관찰되었다.

Keywords

References

  1. Sabbagh J, McConnell RJ, McConnell MC. Posterior composites: Update on cavities and filling techniques. J Dent 2017;57:86-90. https://doi.org/10.1016/j.jdent.2016.11.010
  2. Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry - a review. FDI Commission Project 1-97. Int Dent J 2000;50:1-12. https://doi.org/10.1111/j.1875-595X.2000.tb00540.x
  3. Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, Shearer AC, Vanherle G, Wilson NH. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. J Dent 2014;42:377-83. https://doi.org/10.1016/j.jdent.2014.01.009
  4. Banerjee A. Minimal intervention dentistry: part 7. Minimally invasive operative caries management: rationale and techniques. Br Dent J 2013;214:107-11. https://doi.org/10.1038/sj.bdj.2013.106
  5. Ericson D, Kidd E, McComb D, Mjor I, Noack MJ. Minimally Invasive Dentistry - concepts and techniques in cariology. Oral Health Prev Dent 2003;1:59-72.
  6. Tassery H, Levallois B, Terrer E, Manton DJ, Otsuki M, Koubi S, Gugnani N, Panayotov I, Jacquot B, Cuisinier F, Rechmann P. Use of new minimum intervention dentistry technologies in caries management. Aust Dent J 2013;58 Suppl 1:40-59. https://doi.org/10.1111/adj.12049
  7. Casagrande L, Laske M, Bronkhorst EM, Huysmans MCDNJM, Opdam NJM. Repair may increase survival of direct posterior restorations - A practice based study. J Dent 2017;64:30-6. https://doi.org/10.1016/j.jdent.2017.06.002
  8. Staehle HJ, Wohlrab T, Saure D, Wolff D, Frese C. A 6.5-year clinical follow-up of direct resin composite buildups in the posterior dentition: Introduction of a new minimally invasive restorative method. J Dent 2015;43:1211-7. https://doi.org/10.1016/j.jdent.2015.07.007
  9. White JM, Eakle WS. Rationale and treatment approach in minimally invasive dentistry. J Am Dent Assoc 2000;131:13S-9S. https://doi.org/10.14219/jada.archive.2000.0394
  10. Abu-Hanna AA, Mjor IA. Resin composite reinforcement of undermined enamel. Oper Dent 2004;29:234-7.
  11. Eidelman E. Composite resin support of undermined enamel in amalgam restorations. Pediatr Dent 1999;21:118-20.
  12. Fonseca RB, Fernandes-Neto AJ, Correr-Sobrinho L, Soares CJ. The influence of cavity preparation design on fracture strength and mode of fracture of laboratory processed composite resin restorations. J Prosthet Dent 2007;98:277-84. https://doi.org/10.1016/S0022-3913(07)60101-2
  13. Yang H, Park C, Shin JH, Yun KD, Lim HP, Park SW, Chung H. Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis. J Adv Prosthodont 2018;10:184-90. https://doi.org/10.4047/jap.2018.10.3.184
  14. St-Georges AJ, Sturdevant JR, Swift EJ Jr, Thompson JY. Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent 2003;89:551-7. https://doi.org/10.1016/S0022-3913(03)00173-2
  15. Costa A, Xavier T, Noritomi P, Saavedra G, Borges A. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent 2014;39:E160-70. https://doi.org/10.2341/13-092-L
  16. Yamanel K, Caglar A, Gulsahi K, Ozden UA. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis. Dent Mater J 2009;28:661-70. https://doi.org/10.4012/dmj.28.661
  17. Latino C, Troendle K, Summitt JB. Support of undermined occlusal enamel provided by restorative materials. Quintessence Int 2001;32:287-91.
  18. Soares CJ, Martins LR, Pfeifer JM, Giannini M. Fracture resistance of teeth restored with indirectcomposite and ceramic inlay systems. Quintessence Int 2004;35:281-6.
  19. Dejak B, Mlotkowski A. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars. J Prosthet Dent 2008;99:131-40. https://doi.org/10.1016/S0022-3913(08)60029-3
  20. Jiang W, Bo H, Yongchun G, LongXing N. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: a threedimensional finite element analysis. J Prosthet Dent 2010;103:6-12. https://doi.org/10.1016/S0022-3913(09)60206-7
  21. Zarone F, Sorrentino R, Apicella D, Valentino B, Ferrari M, Aversa R, Apicella A. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: a 3D static linear finite elements analysis. Dent Mater 2006;22:1035-44. https://doi.org/10.1016/j.dental.2005.11.034
  22. Guven S, Akdogan M, Oz C, Dogan MS, Unal M, Unal S, Sahbaz C. Three-dimensional finite-element analysis of two ceramic inlay restorations with different cavity designs. Biotechnol Biotechnol Equip 2015;29:579-85. https://doi.org/10.1080/13102818.2015.1015445
  23. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater 2007;23:539-48. https://doi.org/10.1016/j.dental.2006.03.013
  24. Heo KH, Lim YJ, Kim MJ, Kwon HB. Threedimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible. J Adv Prosthodont 2018;10:138-46. https://doi.org/10.4047/jap.2018.10.2.138
  25. Zelic K, Vukicevic A, Jovicic G, Aleksandrovic S, Filipovic N, Djuric M. Mechanical weakening of devitalized teeth: three-dimensional Finite Element Analysis and prediction of tooth fracture. Int Endod J 2015;48:850-63. https://doi.org/10.1111/iej.12381
  26. Wayne JS, Chande R, Porter HC, Janus C. Effect of restoration volume on stresses in a mandibular molar: a finite element study. J Prosthet Dent 2014;112:925-31. https://doi.org/10.1016/j.prosdent.2014.01.006
  27. Ausiello P, Franciosa P, Martorelli M, Watts DC. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dent Mater 2011;27:423-30. https://doi.org/10.1016/j.dental.2010.12.001
  28. Thompson MC, Thompson KM, Swain M. The allceramic, inlay supported fixed partial denture. Part 1. Ceramic inlay preparation design: a literature review. Aust Dent J 2010;55:120-7. https://doi.org/10.1111/j.1834-7819.2010.01214.x