• Title/Summary/Keyword: Finite difference time domain method

Search Result 361, Processing Time 0.028 seconds

An Improvement of the Field Uniformity inside the Reverberation Chamber with Inclined QRD Set (경사진 QRD를 이용한 전자파 잔향실 내 전자기장 균일도 향상을 위한 연구)

  • Lee, Byoung-Jun;Kim, Hye-Kwang;Rhee, Joong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.577-583
    • /
    • 2007
  • The field uniformity inside the reverberation chamber has been improved using sets of quadratic residue diffuser (QRD). The electromagnetic field inside the reverberation chamber with the dimension of $100{\times}80{\times}80cm$ has been analyzed by the finite-difference time-domain(FDTD) method. The calculated fields in a $40{\times}30{\times}30cm$ test volume have been sampled to obtain a standard deviation and field uniformity. Results show that the standard deviation of the calculated field and uniformity have been improved by varying angles and orientation of the inclined surfaces of the QRDs installed inside the reverberation chamber.

Microwave Characteristics Analysis of TWPD′s Using the FDTD Method (FDTD를 이용한 TWPD의 마이크로파 특성 분석)

  • Gong, Sun-Cheol;Lee, Seung-Jin;Lee, Jeong-Hun;Ok, Seong-Hae;Choe, Yeong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.63-71
    • /
    • 2002
  • In this paper, we present microwave characteristics of traveling-wave photodetectors (TWPD) using the finite-difference time-domain method (FDTD). Current and voltage in the time domain are calculated by the FDTD. Also, characteristic impedance and propagation constant in frequency domain are obtained from the time-domain data. As the thickness of i-layer gets thicker and the waveguide width gets narrower, TWPD's show less microwave loss and higher velocity. The 50Ω impedance matching design is achieved for 2.4${\mu}{\textrm}{m}$ waveguide width and 1.2${\mu}{\textrm}{m}$ thickness of i-layer at 100 GHz.

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

Numerical Study of Estimating the Arrival Time of UHF Signals for Partial Discharge Localization in a Power Transformer

  • Ha, Sang-Gyu;Cho, Jeahoon;Lee, Juneseok;Min, Byoung-Woon;Choi, Jaehoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Partial discharges (PDs) are electrical sparks that occur inside insulation between two conducting electrodes and can lead to the disastrous failure of insulation systems. To determine the location of a PD, a distributed array of UHF PD sensors is used to detect the electromagnetic (EM) signals emitted from the PD source, and the localization of the PD source can be estimated using the time difference of arrival (TDOA) between EM signals captured by the UHF PD sensor array. There are four popular methods to estimate the TDOA-the first peak method, the cross-correlation method, the energy criterion method, and the average time window threshold method. In this work, we numerically investigate the influence of noise on estimating the TDOA for the four different methods. Numerical results show that the energy criterion method is more robust against noise than other methods.

Subcell Maxwell-Boltzmann FDTD Method for Analyzing Thin Plasma Layer (얇은 플라즈마 층의 전자기 해석을 위한 Subcell 맥스웰-볼츠만 유한 차분 시간 영역 기법)

  • Jung, Inkyun;Kim, Yuna;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.326-332
    • /
    • 2015
  • Analyzing electromagnetic properties in plasma medium, it is difficult to numerically solve electromagnetic problem with thin plasma. In this paper, subcell Maxwell-Boltzmann FDTD method was proposed which is combined with Maxwell-Boltzmann FDTD and subcell FDTD method for analyzing plasma and electrically thin materials, respectively. Calculations of reflection coefficient and absorption rate error were performed by using 1D FDTD method. Reflection coefficient computed by applying the proposed method is in agreement with analytic solution. Absorption rate error analyzed by employing the proposed method is 1/10 times less than one by using conventional method.

Properties of Surface Modes Used for Directional Emission from Photonic Crystal Waveguides

  • Chung, K.B.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Directional emission of light exiting a photonic crystal waveguide by a coherent action of radiative surface modes was recently demonstrated, and subsequently the substantial enhancement of the directional emission was achieved by engineering the surface and adjusting relevant parameters. Here we present the analysis of surface modes causing the enhanced emission by the plane wave expansion method and the finite-difference time-domain method. In particular, surface band structures are calculated for nonradiative and radiative surface modes, respectively, and intensity profiles of some representative modes for nonradiative and radiative cases are given.

Simultaneous Switching Noise Reduction Technique in Multi-Layer Boards using Conductive Dielectric Substrate (전도성 운전기판을 이용한 다층기판에서의 Simultaneous Switching Noise 감소 기법)

  • 김성진;전철규;이해영
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.11a
    • /
    • pp.33-36
    • /
    • 1999
  • In this paper, we proposed a simultaneous switching noise(SSN) reduction technique in muti-layer beards(MLB) for high-speed digital applications and analyzed them using the Finite Difference Time Domain(FDTD) method. The new method by conductive dielectric substrates reduces SSN couplings and resonances, significantly, which cause series malfunctions in the modem high-speed digital applications.

  • PDF

Analysis of Crosstalk between PCB Traces in Frequency and Time Domain (주파수 및 시간 영역에서 인쇄회로기판 선로의 혼신 해석)

  • 이애경;심환우;조광윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.430-439
    • /
    • 1996
  • In printed circuit board (PCB) design, it is necessary to predict the crosstalk effect among traces on the circuitary behavior. In this paper, crosstalk between parallel or crossing traces was treated by the finite difference time domain (FDTD) method. They are the typical models of PCB traces and the crosstalk is a major contributor in the creation of electromagnetic interference (EMI). The crosstalk effect was computed for the variation of distance spacing and length of parallel traces and crossing traces. The results in time and frequency domain are discussed and compared with those using MDS(microwave design system) and HFSS(high frequency structure simulator). The comparison shows that the FDTD method can be of wide application in analysis model and save the time required for calculation.

  • PDF

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.