• Title/Summary/Keyword: Finite Memory

Search Result 344, Processing Time 0.025 seconds

M10CN전자교환기 상태천이 Table의 재구성에 대한 연구

  • Lee, Yun-Bok;Kim, Hyeon-U
    • ETRI Journal
    • /
    • v.5 no.4
    • /
    • pp.17-21
    • /
    • 1983
  • Sine call handling for stored program control exchange can be regarded as finite state machine model of sequential process, the state transition concept is applied to describe its functions. Coding method of the state transition table applied to M10CN ESS call processing and concerned topics was discussed and proposed another method for reduction memory usage.

  • PDF

Pattern Testable NAND-type Flash Memory Built-In Self Test (패턴 테스트 가능한 NAND-형 플래시 메모리 내장 자체 테스트)

  • Hwang, Phil-Joo;Kim, Tae-Hwan;Kim, Jin-Wan;Chang, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.122-130
    • /
    • 2013
  • The demand and the supply are increasing sharply in accordance with the growth of the Memory Semiconductor Industry. The Flash Memory above all is being utilized substantially in the Industry of smart phone, the tablet PC and the System on Chip (SoC). The Flash Memory is divided into the NOR-type Flash Memory and the NAND-type Flash Memory. A lot of study such as the Built-In Self Test (BIST), the Built-In Self Repair (BISR) and the Built-In Redundancy Analysis (BIRA), etc. has been progressed in the NOR-type fash Memory, the study for the Built-In Self Test of the NAND-type Flash Memory has not been progressed. At present, the pattern test of the NAND-type Flash Memory is being carried out using the outside test equipment of high price. The NAND-type Flash Memory is being depended on the outside equipment as there is no Built-In Self Test since the erasure of block unit, the reading and writing of page unit are possible in the NAND-type Flash Memory. The Built-In Self Test equipped with 2 kinds of finite state machine based structure is proposed, so as to carry out the pattern test without the outside pattern test equipment from the NAND-type Flash Memory which carried out the test dependant on the outside pattern test equipment of high price.

Biomechanical Evaluation of SMA Dynamic Stabilization for Spinal fusion (척추고정용 형상기억합금 동적안정기기의 생체역학적 성능 평가)

  • Kim Y.H.;Park W.M.;Kim K.;Park H.K.;Joo J.W.;Park K.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.517-518
    • /
    • 2006
  • In this study, a commercial fixation device, BioFlex, which was designed with shape memory alloy(SMA) for dynamic stabilization of spine was biomechanically evaluated. The finite element model of intact lumbar spine from L1 to S was developed using CT images. Also, low FE models of 2-level(L4-L5-S) and 3-level(L3-L4-L5-S) posteriori fixation using titanium(Ti) rod and BioFlex(SMA) rod. The rotations of bone segments in the intact model and four models were predicted. Although the rotations of the BioFlex fixation model were smaller than those of the intact model, they were relatively larger than those of Ti fixation. The present can be applied for not only evaluation of the stability of interbody fixator, but also development of new implant.

  • PDF

Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam

  • Halahla, Abdulsamee M.;Tahnat, Yazan B. Abu;Dwaikat, Monther B.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • Beam-column joints (BCJs) are recognized among the most crucial zones in reinforced concrete structures, as they are the critical elements subjected to a complex state of forces during a severe earthquake. Under such conditions, BCJs exhibit behaviors with impacts that extend to the whole structure and significantly influence its ductility and capability of dissipating energy. The focus of this paper is to investigate the effect of undamaged transverse beam (secondary beams) on the ductility of concrete BCJs reinforced with conventional steel and shape memory alloys bars using pushover analysis at tip of beam under different axial load levels at the column using a nonlinear finite element model in ABAQUS environment. A numerical model of a BCJ was constructed and the analysis outcomes were verified by comparing them to those obtained from previous experiments found in the literature. The comparison evidenced the capability of the calibrated model to predict the load capacity response of the joint. Results proved the ability of undamaged secondary beams to provide a noticeable improvement to the ductility of reinforced concrete joints, with a very negligible loss in load capacity. However, the effect of secondary beams can become less significant if the beams are damaged due to seismic effects. In addition, the axial load was found to significantly enhance the performance of BCJs, where the increase in axial load magnified the capacity of the joint. However, higher values of axial load resulted in greater initial stiffness of the BCJ.

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Hosseinnejad, Hossein;Lotfollahi-Yaghin, Mohammad Ali;Hosseinzadeh, Yousef;Maleki, Ahmad
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions

  • Shrestha, Kshitij C.;Araki, Yoshikazu;Nagae, Takuya;Omori, Toshihiro;Sutou, Yuji;Kainuma, Ryosuke;Ishida, Kiyohito
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.233-256
    • /
    • 2011
  • This paper investigates the applicability of newly developed Cu-Al-Mn shape memory alloy (SMA) bars to retrofitting of historical masonry constructions by performing quasi-static tests of half-scale brick walls subjected to cyclic out-of-plane flexure. Problems associated with conventional steel reinforcing bars lie in pinching, or degradation of stiffness and strength under cyclic loading, and in their inability to restrain residual deformations in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu-Al-Mn SMA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Three types of brick wall specimens, unreinforced, steel reinforced, and SMA reinforced specimens are prepared. The specimens are subjected to quasi-static cyclic loading up to rotation angle enough to cause yielding of reinforcing bars. Corresponding nonlinear finite element models are developed to simulate the experimental observations. It was found from the experimental and numerical results that both the steel reinforced and SMA reinforced specimens showed substantial increment in strength and ductility as compared to the unreinforced specimen. The steel reinforced specimen showed pinching and significant residual elongation in reinforcing bars while the SMA reinforced specimen did not. Both the experimental and numerical observations demonstrate the superiority of Cu-Al-Mn SMA bars to conventional steel reinforcing bars in retrofitting historical masonry constructions.

Characteristic Analysis of Superelastic Shape Memory Alloy Long-Lasting Damper with Pretension (긴장력이 적용된 초탄성 형상기억합금 장수명 댐퍼의 특성 분석)

  • Lee, Heon-Woo;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • A seismic structure is an earthquake-resistant design that dissipates seismic energy by equipping the structure with a device called a damper. As research efforts to reduce earthquake damage continue to rise, technology for isolating vibrations in structures has evolved by altering the materials and shapes of dampers. However, due to the inherent nature of the damper, there are an unescapable restrictions on the extent of plastic deformation that occurs in the material to effectively dissipate energy. Therefore, in this study, we proposed a long-life damper that offers semi-permanently usage and enhances structural performance by applying additional tension which is achieved by utilizing super elastic shape memory alloy (SSMA), a material that self-recovers after deformation. To comprehensively understand the behavior of long-life dampers, finite element analysis was performed considering the design variables such as material, wire diameter, and presence of tension, and response behavior was derived to analyze characteristics such as load resistance, energy dissipation, and residual displacement to determine the performance of long-life dampers in seismic structure. Excellence has been proven from finite element analysis results.

Advanced Finite Element Analysis for Linear Viscoelastic Problems of a Hereditary-Type Constitutive Law (유전적분형 선형 점탄성문제의 유한요소법에 의한 효율적 해석)

  • 심우진;이성희
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-114
    • /
    • 1993
  • An advanced time-domain finite element formulation is presented for the displacement and stress analysis of isotropic, linear viscoelastic problems of a hereditary-type constitutive law. The semidiscrete finite element method with linear time-stepping scheme and an elastic-viscoelastic correspondence principle are used in the theoretical development. An efficient treatment of hereditary integral is introduced to improve the numerical accuracy, to reduce the computation time, and to avoid the use of large memory storage. Two-dimensional numerical examples of plane strain and plane stress are solved under the assumption on the material property of being elastic in dilatation and like three-element Voigt model in distorsion, and compared with the analytical solutions and the past numerical results to show the versatility and efficiency of the proposed method.

  • PDF

Efficient Analysis of Biaxial Hollow Slab (2방향 중공슬래브의 효율적인 해석)

  • Park, Hyun-Jae;Kim, Hyun-Su;Park, Yong-Koo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.362-367
    • /
    • 2008
  • Recently, the use of biaxial hollow slab is increased to reduce noise and vibration of the floor slab. Therefore, an efficient method for the vibration analysis of biaxial hollow slab is required to describe dynamic behavior of biaxial hollow slab. A finite element analysis is one of the method to analyze the biaxial hollow slab. It is necessary to use a refined finite element model for an accurate analysis of a floor slab with an effects of the hollow shape. But it would take a significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Thus the proposed method uses equivalent plate model in this study. Dynamic analyses of an example structure subjected to walking loads were performed to verify the efficiency and accuracy of the proposed method.

  • PDF

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF