• 제목/요약/키워드: Finite Fracture Mechanics

검색결과 352건 처리시간 0.027초

Numerical analysis of crack propagation in cement PMMA: application of SED approach

  • Ali, Benouis;Abdelkader, Boulenouar;Noureddine, Benseddiq;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.93-109
    • /
    • 2015
  • Finite element analysis (FEA) combined with the concepts of linear elastic fracture mechanics (LEFM) provides a practical and convenient means to study the fracture and crack growth of materials. In this paper, a numerical modeling of crack propagation in the cement mantle of the reconstructed acetabulum is presented. This work is based on the implementation of the displacement extrapolation method (DEM) and the strain energy density (SED) theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors (SIFs). In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the defect on the crack propagation path was highlighted.

용접부 3차원 표면균열선단에서의 구속상태 (The 3D Surface Crack-Front Constraints in Welded Joins)

  • 이형일;서현
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

V-notched elements under mode II loading conditions

  • Sapora, Alberto;Cornetti, Pietro;Carpinteri, Alberto
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.499-508
    • /
    • 2014
  • We apply the Finite Fracture Mechanics criterion to address the problem of a V-notched structure subjected to mode II loading, i.e., we provide a way to determine the direction and the load at which a crack propagates from the notch tip and express the critical conditions in terms of the generalized stress intensity factor. Weight functions for V-notch emanated cracks available in the literature allow us to implement the fracture criterion proposed in an almost completely analytical manner: the determination of the critical load and the direction of crack growth is reduced to a stationary point problem. A comparison with experimental data presented in the Literature concludes the paper.

Micro-mechanical modeling for compressive behavior of concrete material

  • Haleerattanawattana, P.;Senjuntichai, T.;Limsuwan, E.
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.691-707
    • /
    • 2004
  • This paper presents the micro-mechanical modeling for predicting concrete behavior under compressive loading. The model is able to represent the heterogeneities in the microstructure up to three phases, i.e., aggregate particles, matrix and interfaces. The smeared crack concept based on non-linear fracture mechanics is implemented in order to formulate the constitutive relation for each component. The splitting tensile strength is considered as a fracture criterion for cracking in micro-level. The finite element method is employed to simulate the model based on plane stress condition by using quadratic triangular elements. The validation of the model is verified by comparing with the experimental results. The influence of tensile strength from both aggregate and matrix phases on the concrete compressive strength is demonstrated. In addition, a guideline on selecting appropriate tensile strength for each phase to obtain specified concrete compressive strength is also presented.

Finite element analysis of shallow buried tunnel subjected to traffic loading by damage mechanics theory

  • Mohammadreza Tameh
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.57-68
    • /
    • 2024
  • Tunnels offer myriad benefits for modern countries, and understanding their behavior under loads is critical. This paper analyzes and evaluates the damage to buried horseshoe tunnels under soil pressure and traffic loading. To achieve this, a numerical model of this type of tunnel is first created using ABAQUS software. Then, fracture mechanics theory is applied to investigate the fracture and damage of the horseshoe tunnel. The numerical analysis is based on the damage plasticity model of concrete, which describes the inelastic behavior of concrete in tension and compression. In addition, the reinforcing steel is modeled using the bilinear plasticity model. Damage contours, stress contours, and maximum displacements illustrate how and where traffic loading alters the response of the horseshoe tunnel. Based on the results, the fracture mechanism proceeded as follows: initially, damage started at the center of the tunnel bottom, followed by the formation of damage and micro-cracks at the corners of the tunnel. Eventually, the damage reached the top of the concrete arch with increasing loading. Therefore, in the design of this tunnel, these critical areas should be reinforced more to prevent cracking.

Finite element fracture reliability of stochastic structures

  • Lee, J.C.;Ang, A.H.S.
    • Structural Engineering and Mechanics
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 1995
  • This study presents a methodology for the system reliability analysis of cracked structures with random material properties, which are modeled as random fields, and crack geometry under random static loads. The finite element method provides the computational framework to obtain the stress intensity solutions, and the first-order reliability method provides the basis for modeling and analysis of uncertainties. The ultimate structural system reliability is effectively evaluated by the stable configuration approach. Numerical examples are given for the case of random fracture toughness and load.

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

Crack propagation in flexural fatigue of concrete using rheological-dynamical theory

  • Pancic, Aleksandar;Milasinovic, Dragan D.;Goles, Danica
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.55-62
    • /
    • 2021
  • The concrete fatigue analysis can be performed with the use of fracture mechanics. The fracture mechanics defines the fatigue crack propagation as the relationship of crack growth rate and stress intensity factor. In contrast to metal, the application of fracture mechanics to concrete is more complicated and therefore many authors have introduced empirical expressions using Paris law. The topic of this paper is development of a new prediction of fatigue crack propagation for concrete using rheological-dynamical analogy (RDA) and finite element method (FEM) in the frame of linear elastic fracture mechanics (LEFM). The static and cyclic fatigue three-point bending tests on notched beams are considered. Verification of the proposed approach was performed on the test results taken from the literature. The comparison between the theoretical model and experimental results indicates that the model proposed in this paper is valid to predict the crack propagation in flexural fatigue of concrete.

Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics

  • Matsubara, Hitoshi;Yagawa, Genki
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.277-293
    • /
    • 2009
  • The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.

콘크리트 파괴진행영역의 유한요소모델링 (Finite Element Modeling of Fracture Process Zone in Concrete)

  • 송하원;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.35-41
    • /
    • 1995
  • Fracture Mechanics does work for concrete, provided that a finite nonlinear zone at fracture front is being considered. The development of model for fracture process zone is most important to describe fracture phenomena in concrete. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrack with stresses transmitted by aggregates in concrete, is model led by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the model of fracture process zone in concrete.

  • PDF