• Title/Summary/Keyword: Finite Fracture Mechanics

Search Result 352, Processing Time 0.027 seconds

p-Version Finite Element Analysis of Cracked Panels Based on Linear Elastic Fracture Mechanics (선형탄성파괴역학 이론에 의한 균열판의 p-Version 유한요소해석)

  • 윤영필;우광성;박병기;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.19-26
    • /
    • 1993
  • The p-version crack model based on integrals of Legendre polynomial and virtual crack extension method is proposed with its potential for application to stress intensity factor computations in linear elastic fracture mechanics. The main advantage of this model is that the data preparation effort is minimal because only a small number of elements are used and the high accuracy and the rapid rate of convergence can be achieved in the vicinity of crack tip. There are two important findings from this study. Firstly, the limit value, the strain energy of the exact solution can be estimated with successive three p-version approximations by ascertaining the approximations is entered the asymptotic range. Secondly, the rate of convergence of p-version model is almost twice that of h-version model on the basis of uniform or quasiuniform mesh refinement for the cracked panel problem subjected tension.

  • PDF

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara;Abdelkader, Boulenouar;Miloud, Aminallah;Noureddine, Benseddiq
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.371-379
    • /
    • 2017
  • Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading (이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

Fracture Measurements on WST test using Dye Penetration Method (염색체 침투법을 이용한 쐐기쪼갬시험체의 파괴특성)

  • 어석홍;박영규;황규만;최덕진;홍기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.719-724
    • /
    • 2001
  • In this study, wedge splitting tensile test(WST) using dye penetration method was carried out to investigate cracking criterion and fracture characteristics of concrete. For the this purpose, three levels of compressive strength of 180, 300 and 600 kgf/$\textrm{cm}^2$ and five testing age of 1, 3, 7, 14 and 28 days were selected as test variables. The specimen was loaded in a controlled manner and then dye was inserted at the load of 40%, 70% of the presumed peak load and at the load of 90% just after peak load. The fracture process zone was measured at each load step of a specimen. Test results were compared with analytic results by linear elastic fracture mechanics(LEFM) and numerical results through fictitious crack model(FCM) and finite element method(FEM).

  • PDF

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

A direct XFEM formulation for modeling of cohesive crack growth in concrete

  • Asferg, J.L.;Poulsen, P.N.;Nielsen, L.O.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.83-100
    • /
    • 2007
  • Applying a direct formulation for the enrichment of the displacement field an extended finite element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST). Modeling of standard concrete test cases such as fracture in the notched three point beam bending test (TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show good agreement with results obtained by applying standard interface elements in FEM and with experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of the crack growth direction is discussed.

KI Criteria of Surface Check under Stepwise Loadings of Drying Stresses

  • Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.51-56
    • /
    • 1999
  • Finite element method was utilized to analyze crack tip stress and displacement field under drying stress case as stepwise loading. Opening mode of single-edge-notched model was employed and analyzed by linear elastic fracture mechanics of plane stress case. The drying stresses were applied as stepwise loads at the boundary elements of the model with 10 steps of time serial. The stress intensity factor($K_I$) for opening mode reached to its maximum just prior to the stress reversal. The $K_I$ from the displacement fields revealed 1.7 times higher than those from stress fields. By comparing the two sets of $K_I$ from displacement and stress fields, single parameter $K_I$ showed its validity to characterize displacement fields around the crack tip front while stress field could not be characterized due to large variations between two sets of data.

  • PDF