• Title/Summary/Keyword: Finite Element Stress Analysis

Search Result 4,467, Processing Time 0.018 seconds

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Finite Element Modeling and Mechanical Analysis of Orthodontics (치아교정의 역학적 해석을 의한 유한요소 모델링 및 치아의 거동해석)

  • Heo, Gyeong-Heon;Cha, Gyeong-Seok;Ju, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.907-915
    • /
    • 2000
  • The movement of teeth and initial stress associated with the treatment of orthodontics have been successfully studied using the finite element method. To reduce the effort in preprocessing of finite element analysis, we developed two types of three-dimensional finite element models based on the standard teeth model. Individual malocclusions were incorporated in the finite element The movement of teeth and initial stress associated with the treatment of orthodontics have been successfully studied using the finite element method. To reduce the effort in preprocessing of finite element analysis, we developed two types of three-dimensional finite element models based on the standard teeth model. Individual malocclusions were incorporated in the finite element models by considering the measuring factors such as angulation, crown inclination, rotation and translations. The finite element analysis for the wire activation with a T-loop arch wire was carried out. Mechanical behavior on the movement and the initial stress for the malocclusion finite element model was shown to agree with the objectives of the actual treatment. Finite element models and procedures of analysis developed in this study would be suitably utilized for the design of initial shape of the wire and determination of activation displacements.

Finite Element Analysis of the Stress Concentrations for Butt Welded Joints (유한요소 해석에 의한 맞대기 용접 이음의 응력집중에 과한 연구)

  • 구병춘;최병일;김재훈
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.59-64
    • /
    • 2004
  • The purpose of this study is to investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints. The influence of three parameters such as toe radii, flank angles and bead heights on the stress concentration factors is studied by finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. Finally a formula to estimate the stress concentration factors considering the three parameters and others is proposed and estimated results are compared with the results obtained by finite element analysis.

Improved stress recovery for elements at boundaries

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1997
  • Patch recovery attempts to derive a more accurate stress filed over a particular element than the finite element shape function used for that particular element. Elements that have a free edge being the boundary to the structure have particular stress relationship that can be incorporated to the stress field to improve the accuracy of the approximation.

Sensitivity Analysis of Strain on Notches under Cyclic Loading to 2-D Finite Element Density in Elasto-Plastic Finite Element Analysis (탄소성 유한요소해석시 2차원 유한요소 밀도에 대한 반복하중이 작용하는 노치부의 변형률의 민감도 분석)

  • Jong-Sung Kim;Hyun-Su Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This paper presents sensitivity analysis results of strain on notches under cycling loading to 2-D finite element density considering plasticity. Cylindrical notched specimens having some stress concentrations were modeled with 2-D axisymmetrical finite element having various finite element densities. Elasto-plastic finite element analysis was performed for the various finite element models subjected to cycling loading considering plasticity. The finite element analysis results were compared to investigate sensitivity of the finite element analysis variables such as von-Mises effective stress, accumulated equivalent plastic strain, and equivalent plastic strain to 2-D finite element density. As a result of the comparison, it was found that the accumulated equivalent plastic strain is more sensitive than the others whereas the von-Mises effective stress is much less sensitive.

An Analysis of the Fatigue Crack Opening Behaviour in the Welding Residual Stress Field by the Finite Element Method (압축잔류응력장을 전파하는 피로균열의 개구거동의 유한요소법을 이용한 해석적 검토)

  • 박응준;김응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • The finite element analysis was performed for the cracks existing in residual stress fields in order to investigate the effects of configuration of residual stress distribution to the fatigue crack opening behaviour. And the variation of stress distributions adjacent to the crack caused by uploading was examined. The finite element model with contact elements for the crack plane and plane stress elements for the base material and the analytical method based on the superposition principle to estimate crack opening behaviour and the stress distribution adjacent to the crack subjected to uploading were used. The results of the analysis showed that crack opening behaviors and variations of stress distribution caused by uploading were changed depending on the configuration of residual stress distribution. When the crack existed in the region of compressive residual stress and the configuration of compressive residual stress distribution were inclined, a partial crack opening just behind of a crack tip occurred during uploading. Based on the above results, it was clarified that the crack opening behaviour in the residual stress field could be predicted accurately by the finite element analysis using these analytical method and model.

Boundary stress resolution and its application to adaptive finite element analysis

  • Deng, Jianhui;Zheng, Hong;Ge, Xiurun
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.115-124
    • /
    • 1998
  • A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.

Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method (3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석)

  • Lee, Kyoung-Soo;Kim, Tae-Ryong;Kim, Maan-Won;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint ($Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가)

  • 박영철;오세욱;조용배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Minimization of Residual Stress of the Steel Cord for the Tire-reinforcement Using Finite Element Analysis (유한요소해석을 이용한 타이어 보강재용 스틸코드의 잔류응력 최소화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Lee, Byung-Ho
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper, several process parameter studies of the manufacturing process of the steel cords are carried out to verify the relation between the process parameters and the residual stresses on the steel cords. At first, the finite element analysis of the drawing process is performed and the residual stress distributions with respect to the wire material and the area reduction ratio are obtained. The residual stress of the drawn wire is imported the finite element analysis of the twisting process as an initial stress. After that a parameter study of the twisting process is carried out. The process parameters are the applied tension, the over-twisting angle and the tensile strength of the drawn wire. Based on these studies, the optimum values of the process parameters which can remove or reduce the undesired residual stresses are determined. The optimum value of the process parameters are confirmed by the finite element analysis of the elastic recovery process of the steel cords. Finally, the finite element analysis of the roller straightening process is done to study the variation of the distribution of the residual stress before and after the process.

  • PDF