• 제목/요약/키워드: Finite Element Stamping Analysis

검색결과 106건 처리시간 0.023초

스프링백 특성에 영향을 미치는 수치변수의 분석을 위한 다구치 실험계획법의 응용 (Application of the Taguchi Method to the Analysis of the Numerical Parameters Influencing Springback Characteristics)

  • 김형종;전태보
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.211-218
    • /
    • 2000
  • It is desirable but difficult to predict springback quantitatively and accurately for successful tool and process design in sheet stamping operations. The result of springback analysis by the finite element method (FEM) is sensitively influenced by numerical factors such as blank element size, number of integration points, punch velocity, contact algorithm, etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on the result of springback analysis quantitatively and to obtain the combination of numerical factors which gives the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by the dynamic-explicit finite element method says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The U-draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model because it is most popular one for evaluating the springback characteristic.

  • PDF

수직벽을 가진 자동차 부품 성형공정의 스프링백 유한요소 해석 (Finite Element Springback Analysis of Vertically-Walled Auto-Body Part)

  • 이두환;윤치상;신철수;조원석;구본영;금영탁
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.574-581
    • /
    • 2000
  • A vertically-walled auto-body part is one of the most difficult stamping parts because of angle change, wall curl, and twisting of the blank after springback as well as fracture and wrinkle. In this study, computational simulations of the vertically-walled auto-body part are carried out focusing on angle change, wall curl, and twisting after springback. Binderwrap blank shape is used in forming analysis for precise initial contacts between punch and blank. An adaptive mesh method is used in springback analysis for precise calculation of bending moments. In springback analysis, the differences of 2 and 3 dimensional analysis are compared and the effects of blank holdig force and friction coefficient are evaluated. In order to verify the validity of simulation results, they are compared with measured ones. The predicted thickness distribution and formed shape are agreed well with those of the measurement. The Predicted springback amount is less than that of the measurement.

  • PDF

용접부를 고려한 레이저 합체박판 성형공정의 3차원 유한요소 해석 (3-D FEM Analysis of Forming Process for Laser Welded Blank Considering Welded Zone)

  • 금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.14-17
    • /
    • 1999
  • The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welded zone(WZ) is modelled with several narrow finite elements whose material characteristics are analytically obtained from those of base metals based on the tensile tests. In order to show the reliability and effectiveness of weld element the forming process of hemispherical dome stretching and auto-body door inner panel stamping are simulated FEM predictions show good agreements with experimental observations.

  • PDF

유한요소해석을 이용한 테일파이프의 튜브하이드로포밍 공정 개발 연구 (Development of Tube Hydroforming for a Tail Pipe Using FE Analysis)

  • 한수식
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.176-181
    • /
    • 2016
  • The exhaust tail pipe is the only visible part of the exhaust system on a vehicle. The conventional way to make the tail pipe is welding after stamping. There are various problems that occur during the stamping of stainless steel sheets such as scratching and local fracture. Problems during welding can also occur due to poor weldability. Tube hydroforming can be a solution, which eliminates these problems. The current study deals with the development of tube hydroforming for a vehicle tail pipe using finite element analysis for a free-feeding method. The current study focuses on the development of a proper load path for the tail pipe hydroforming and how bending influences the subsequent processing steps. The FE analysis results were compared with experimental results. This study shows the importance of bending and the necessity of considering bending when performing a tube hydroforming analysis.

고강도강 차체 박판부품 프레스성형 CAE의 예측 정확도 고찰 (Investigation of the Prediction Accuracy for the Stamping CAE of Thin-walled Automotive Products)

  • 정대근;김세호;노재동
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.446-452
    • /
    • 2014
  • In the current study finite element forming analysis is performed to understand the final geometric accuracy limitations for the stamping of an automotive S-rail from four different steel sheets having tensile strengths of 340MPa, 440MPa, 590MPa and 780MPa. Comparisons between the analysis and the experiments for both springback and formability as measured by the amount of edge draw-in and the thickness distribution were conducted. The springback modes were classified according to a scheme proposed in the current investigation and the error was calculated using the normalized root mean square error method. While the analysis results show fairly good agreement with the experimental data for deformation and formability, the simulation accuracy is lower for predicting wall curl, camber and section twist as the UTS of steel sheet increases.

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling))

  • 금영탁;이재우
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (2부:모델링) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part2: Modeling))

  • 금영탁;이재우;박승우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.50-54
    • /
    • 1997
  • An expert drawbead model is developed to model a cranky drawbead in the finite element analysis of stamping processes. The expert model calculates the drawbead restraining forces (DBRF's) and bead-exit thinning, which are boundary conditions. DBRF's are calculated by considering bending force, unbending force, and friction force in order. Bead-exit thinning are due to the bending and tension during the deformation. The DBFR's and thinning computed form the mathematical model for the basic beads are compared with measurements and correction factors compensating for the differences are found using the multiple linear regression method. The composition beads are assumed to be a combination of basic beads so that the DBRF's and bead-exit thinning are computed to the sum of those of basic beads.

  • PDF

후륜 현가장치용 CTBA 튜브 프레스 성형공정 개발 (Development of the Tube Press Forming Process for the CTBA of the Rear Suspension Assembly)

  • 김세호;김기풍;박천일
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.263-271
    • /
    • 2008
  • Process design is carried out for a press forming of a CTBA in the rear suspension assembly based on the result of the finite element analysis. The analysis simulates the two-stage stamping process with the initial design and it fully reveals the unfavorable mechanism which develops inferiorities during forming. In this paper, a new design guideline is proposed to modify the process and tool shapes for a single-stage forming process. With the improved tool design, prototypes are fabricated after several try-out processes. Results of the durability tests show that the design requirement of the part is satisfied and the effective weight reduction is achieved.

후륜 현가장치용 부재의 튜브성형기법 개발 (Development of the Tube Forming Method for the Cross Member of a Rear Suspension)

  • 김세호;김기풍;박천일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 2008
  • Tool design is carried out for a press forming of a cross member in the rear suspension assembly based on the result of the finite element analysis. The analysis simulates the two-stage stamping process with the initial design and it fully reveals the unfavorable mechanism which develops inferiorities during forming. In this paper, a new design guideline is proposed to modify the process and tool shapes for a single-stage forming process. With the improved tool design, this study fabricates prototypes that satisfy the durability requirement.

  • PDF

해석적인 방법을 이용한 복잡한 형상의 자동차 부재 스탬핑 공정에서의 주요 설계인자 연구 (Study on Design Parameters in a Stamping Process of an Automotive Member with the Simulation-based Approach)

  • 송정한;김세호;김승호;허훈
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is concerned with the quantitative effect of design parameters on a stamped part of the auto-body. The considered parameters in this paper are the blank holding force, the draw-bead force, the blank size which greatly affect the metal flow during stamping. The indicators of formability selected in this paper are failures such as tearing, wrinkling and the amount of springback. The stamping process of the front side inner member is simulated using the finite element analysis changing the design parameters. The numerical results demonstrate that the blank holding force cannot control the local metal flow during forming although it controls the overall metal flow. The modification of the initial blank size considering the punch opening line ensures the local wrinkling and reduces the amount of springback after forming. The restraining force of draw-bead controls the metal flow in the local area and reduces the amount of excess metal. It is noted that the parametric study of design parameters such as blank holding force, the blank size and the draw-bead are very important in the process design of the complicated member.