• Title/Summary/Keyword: Finite Element Modeling (FEM)

Search Result 415, Processing Time 0.024 seconds

Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method

  • Park, Myung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.805-815
    • /
    • 2003
  • In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate structures, the author developed the finite element-transfer stiffness coefficient method. This method is based on the combination of the modeling techniques in the FEM and the transfer technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results of the simply supported and the elastic supported rectangular plates showed that the present method can be successfully applied to the free vibration analysis of plate structures on a personal computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate structures, the present method is superior to the FEM from the viewpoint of computation time and storage.

Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient (강성계수의 전달에 의한 평판 구조물의 구조해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

Finite element modeling of contact between an elastic layer and two elastic quarter planes

  • Yaylaci, Murat;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In this study, a two dimensional model of receding contact problem has been analyzed using finite element method (FEM) based software ANSYS and ABAQUS. For this aim finite element modeling of elastic layer and two homogeneous, isotropic and symmetrical elastic quarter planes pressed by means of a rigid circular punch has been presented. Mass forces and friction are neglected in the solution. Since the problem is examined for the plane state, the thickness along the z-axis direction is taken as a unit. In order to check the accuracy of the present models, the obtained results are compared with the available results of the open literature as well as the results of two software are compared using Root Mean Square Error (RMSE) and good agreements are found. Numerical analyses are performed considering different values of the external load, rigid circular radius, quarter planes span length and material properties. The contact lengths and contact stresses of these values are examined, and their results are presented. Consequently, it is concluded that the considered non-dimensional quantities have noteworthy influence on the contact lengths and contact stress distributions, additionally if FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

PM Magnetization Characteristics Analysis of a Post-Assembly Line Start Permanent Magnet Motor using coupled Preisach Modeling and Finite Element Method (프라이자흐 모델링과 유한요소법을 이용한 라인 스타트 영구자석 전동기의 영구자석 자화 특성 분석)

  • Rha, Young-Gak;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.469-475
    • /
    • 2014
  • This paper deals with the characteristics evaluations of PM magnetization using stator coil in a Post-Assembly Line Start Permanent Magnet Motor (LSPMM) using a coupled Finite Element Method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics analysis relative to magnetizing direction and quantity of permanent magnets due to the eddy current occurring in the rotor bar during magnetization of Nd-Fe-B.

Efficiency Evaluation of PMASynRM versus SynRM Using a Coupled Finite Element Method and Preisach Modeling

  • Lee, Jung-Ho;Lee, Il-Kyo
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • This paper deals with the efficiency evaluations in a synchronous reluctance motor (SynRM) versus a permanent magnet assisted SynRM (PMASynRM), using a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the characteristics under the effects of saturation and hysteresis loss. We herein focus on the efficiency evaluation relative to hysteresis loss and copper loss on the basis of load conditions in a SynRM and PMASynRM. Computer simulation and experimental results for the efficiency, using a dynamometer, show the propriety of the proposed method and the high performance of the PMASynRM.

MRI Content-Adaptive Finite Element Mesh Generation Toolbox

  • Lee W.H.;Kim T.S.;Cho M.H.;Lee S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.110-116
    • /
    • 2006
  • Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images. In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (cMESHes) based on the contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.

A Study on the Combined Use of Exact Dynamic Elements and Finite Elements (엄밀한 동적 요소와 유한 요소 통합 해석 방법에 관한 연구)

  • 홍성욱;조용주;김종선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Although the finite element method has become an indispensible tool for the dynamic analysis of structures, difficulty remains to quantify the errors associated with discretization. To improve the modeling accuracy, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for the Timoshenko beam element are derived using the exact dynamic element modeling (EDEM) and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. A combined use of finite element method and exact interpolation functions is presented to gain more accurate mode shape functions. This paper also presents a combined use of finite elements and exact dynamic elements in design/reanalysis problems. Timoshenko flames with tapered sections are tested to demonstrate the design procedure with the proposed method. The numerical study shows that the combined use of finite element model and exact dynamic element model is very useful.

Static Analysis of Axisymmetric Circular Plates under Lateral Loading Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 횡방향 하중을 받는 축대칭 원판의 정적해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.64-69
    • /
    • 2014
  • A circular plate is one of the important structures in many industrial fields. In static analysis of a circular plate, we may obtain an exact solution by analytical method, but it is limited to a simple circular plate. Thus, many researchers and designers have used numerical methods such as the finite element method. The authors of this paper developed the finite element-transfer stiffness coefficient method (FE-TSCM) for static and dynamic analyses of various structures. FE-TSCM is the combination of the modeling technique of the finite element method (FEM) and the transfer technique of the transfer stiffness coefficient method (TSCM). FE-TSCM has the advantages of both FEM and FE-TSCM. In this paper, the authors formulate the computational algorithm for the static analysis of axisymmetric circular plates under lateral loading using FE-TSCM. The computational results for three computational models obtained by FE-TSCM are compared with those obtained by FEM in order to confirm the accuracy of FE-TSCM.

Pottery Modeling Using Circular Sector Element Method (부채꼴 요소법을 이용한 3 차원 도자기 모델링)

  • Lee, Jae-Bong;Han, Gab-Jong;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.78-84
    • /
    • 2008
  • This paper presents a fast modeling technique of virtual pottery using force feedback based on a circular sector element method. Previous techniques for simulating deformable objects such as finite element method (FEM) are limited in real-time haptic rendering due to their complexity and expensive computational cost. In our model, circular sector elements which fully represent features of pottery's shape are closely gathered and piled together. This allows efficient deformable object modeling through a decrease in the number of elements and reducing computational cost.

  • PDF

On FEM modeling of piezoelectric actuators and sensors for thin-walled structures

  • Marinkovic, Dragan;Marinkovic, Zoran
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.411-426
    • /
    • 2012
  • Thin-walled adaptive structures render a large and important group of adaptive structures. Typical material system used for them is a composite laminate that includes piezoelectric material based sensors and actuators. The piezoelectric active elements are in the form of thin patches bonded onto or embedded into the structure. Among different types of patches, the paper considers those polarized in the thickness direction. The finite element method (FEM) imposed itself as an essential technical support for the needs of structural design. This paper gives a brief description of a developed shell type finite element for active/adaptive thin-walled structures and the element is, furthermore, used as a tool to consider the aspect of mesh distortion over the surface of actuators and sensors. The aspect is of significance for simulation of behavior of adaptive structures and implementation of control algorithms.