• Title/Summary/Keyword: Finite Element Modal Analysis

Search Result 801, Processing Time 0.025 seconds

에어베어링으로 지지된 캐리지 구조물의 동특성 해석 (Dynamic Characteristics Analysis of the Carriage Structure Supported by Air Bearing)

  • 정순철;김덕수;유충준;장승환;이재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1107-1114
    • /
    • 2003
  • In this thesis, the dynamic characteristic analysis of carriage structure supported by air bearings were peformed. Toward this end, the characteristics of air bearing were numerically analyzed to estimate the stiffness of the air bearing and the clearance between air bearing and guide surface. The modal analysis of the carriage structure was peformed by using finite element method, and the experimental modal analysis was also performed to validate the finite element model, where rigid body modes were compared to validate the stiffness of the air bearings. From the results, the air spring stiffness can be estimated within the range of acceptable accuracy under any pressure and clearance condition.

  • PDF

유한요소법을 이용한 의료용 원심분리기 로터의 응력 및 고유치 해석 (Stress and Modal Analysis for the Rotor System of a Medical Centrifuge using Finite Element Method)

  • 김성민;양인철;김도균;김학철
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.78-85
    • /
    • 2007
  • In this study, we performed finite element analysis for the design of a medical centrifuge and two-types of centrifuge were compared with each other. The types of centrifuge are 2-arm straight type and 3-arm type. Structural analysis was done with respect to the change of the rotational speed of the rotor of a centrifuge. When the rotor of centrifuge was rotated, the von Mises stress of 2-arm straight type-rotor was compared with the von Mises stress of 3-arm type. The margin of safety was estimated from the result. We found the critical speed of centrifuge from the campbell diagram by modal analysis.

유연도행렬 및 질량관성행렬의 축약을 이용한 결합체결 구조부의 등가 계수행렬 요소 모델링 (Equivalent Coefficient Element Modelling for a Jointed Structure Using the Reduction of Flexibility and Mass Matrices)

  • 최영휴;신중호;정원지;박종권;조재혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.655-660
    • /
    • 2000
  • This paper presents the construction of consistent coefficient matrix elements for jointed structures using the reduction of flexibility and mass matrices. The reduced flexibility coefficient matrix hat little structural complexity than Guyan's stiffness matrix reduction since the only element of the original matrix, corresponding to the selected nodal degrees of freedom, contributes. The proposed method was applied to building equivalent coefficient matrices for a clamp jointed structure in finite element modal analysis of a cantilevered beam. The theoretical analysis results were compared with those experimental modal analysis, Comparison of both shows good agreement each other.

  • PDF

복잡한 지지구조의 유연성을 고려한 HDD 스핀들 시스템의 유한요소 동특성 해석 (Finite Element Analysis of Dynamic Characteristics of HDD Spindle System Considering Supporting Structure with Complex Shape)

  • 한재혁;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.312-318
    • /
    • 2001
  • This paper suggests the finite element method to analyze the dynamic characteristics of a rotating HDD system including the supporting structure with general shape. The flexible supporting structure was modeled by tetrahedra elements to produce a finite element model of disk-spindle-shaft-housing system and the dynamic characteristics of the HDD system was investigated due to the change of rotating speed. The validity of the presented method was verified by the modal testing. The supporting structure has an crucial effect on lower modes for HDD system, so that it is required to consider the supporting structure to accurately analyze the dynamic characteristics of HDD system.

  • PDF

온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링 (Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation)

  • 류희룡;조명환;유인호;문두경
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

A hybrid singular value decomposition and deep belief network approach to detect damages in plates

  • Jinshang Sun;Qizhe Lin;Hu Jiang;Jiawei Xiang
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.713-727
    • /
    • 2024
  • Damage detection in structures using the change of modal parameters (modal shapes and natural frequencies) has achieved satisfactory results. However, as modal shapes and natural frequencies alone may not provide enough information to accurately detect damages. Therefore, a hybrid singular value decomposition and deep belief network approach is developed to effectively identify damages in aluminum plate structures. Firstly, damage locations are determined using singular value decomposition (SVD) to reveal the singularities of measured displacement modal shapes. Secondly, using experimental modal analysis (EMA) to measure the natural frequencies of damaged aluminum plates as inputs, deep belief network (DBN) is employed to search damage severities from the damage evaluation database, which are calculated using finite element method (FEM). Both simulations and experimental investigations are performed to evaluate the performance of the presented hybrid method. Several damage cases in a simply supported aluminum plate show that the presented method is effective to identify multiple damages in aluminum plates with reasonable precision.

Free Vibration Analysis of Perforated Plates Using Equivalent Elastic Properties

  • Park, Suhn;Jeong, Kyeong-Hoon;Kim, Tae-Wan;Kim, Kang-Soo;Park, Keun-Bae
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.416-423
    • /
    • 1998
  • Many studies for the perforated plates have been done, especially on the subject of static behavior and stress distribution in the plate. Equivalent elastic properties are one of the successive concepts for this problem. However little effort was taken to get their dynamic characteristics. In this paper finite element modal analysis was performed for the perforated plates having square and triangular hole patterns. An attempt to use existing equivalent elastic properties into the modal analysis of the plate was carried out. To verify feasibility of the finite element models, modal test was also performed on one typical perforated plate. System parameters such as natural frequencies and mode shapes were extracted and compared with the analysis results.

  • PDF

Theoretical and experimental dynamic characteristics of a RC building model for construction stages

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.455-475
    • /
    • 2016
  • Dynamic characteristics, named as natural frequencies, damping ratios and mode shapes, affect the dynamic behavior of buildings and they vary depending on the construction stages. It is aimed to present the effects of construction stages on the dynamic characteristics of reinforced concrete (RC) buildings considering theoretical and experimental investigations. For this purpose, a three-storey RC building model with a 1/2 scale was constructed in the laboratory of Civil Engineering Department at Karadeniz Technical University. The modal testing measurements were performed by using Operational Modal Analysis (OMA) method for the bare frame, brick walled and coated cases of the building model. Randomly generated loads by impact hammer were used to vibrate the building model; the responses were measured by uni-axial seismic accelerometers as acceleration. The building's modal parameters at these construction stages were extracted from the processed signals using the Enhanced Frequency Domain Decomposition (EFDD) technique. Also, the finite element models of each case were developed and modal analyses were performed. It was observed from the experimental and theoretical investigations that the natural frequencies of the building model varied depending on the construction stages considerably.

유한요소 모델 검증 및 개선 (Correlation and Update of Finite Element Model)

  • 왕세명;고창성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.195-204
    • /
    • 2000
  • The finite element analysis (FEA) is widely used in modern structural dynamics because the performance of structure can be predicted in early stage. However, due to the difficulty in determination of various uncertain parameters, it is not easy to obtain a reliable finite element model. To overcome these difficulties, a updating program of FE model is developed by consisting of pretest, correlation and update. In correlation, it calculates modal assurance criteria, cross orthogonality, mixed orthogonality and coordinate modal assurance criteria. For the model updating, the continuum sensitivity analysis and design optimization tool(DOT) are used. The SENSUP program is developed for model updating giving physical parameter sensitivity. The developed program is applied to practical examples such as the BLDC spindle motor of HDD, and upper housing of induction motor. And the sensor placement for the square plate is compared using several methods.

  • PDF