• Title/Summary/Keyword: Finite Element Analysis ANSYS 5.5

Search Result 186, Processing Time 0.021 seconds

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method (임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구)

  • Kim, Yeon-Soo;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF

A Analytical Study on Seismic Performance of Stainless Water Tank using Lead Rubber Bearing (납고무받침을 이용한 스테인리스 물탱크 내진성능에 관한 해석적 연구)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.230-236
    • /
    • 2018
  • Earthquakes over 5.0 on the Richter scale have recently occurred in Korea, which has led to interest in the seismic safety of structures. If a water storage facility is damaged by an earthquake, the water could leak, and the insufficient water would make fire suppression difficult. Therefore, a water storage facility should satisfy safety requirements for earthquakes. In this study, the seismic performance of a water tank was improved by installing a lead rubber bearing between the foundation and the tank. It designed the lead rubber bearing available to the existed concrete foundation. ANSYS was used for modeling to consider the interaction between the fluid and structure of the tank and the hydrostatic and hydrodynamic pressure using four seismic waves. In the case of hydrostatic pressure at 2.5 water level, full level, the same stress appeared irrespective of whether the seismic isolation was installed. When hydrostatic pressure and hydrodynamic pressures are applied at the same time, the seismic-isolated water tank showed less seismic force, and the damping ratio was lower than that of general seismic isolation. This occurred because the weight of the water tank is much smaller than the stiffness of the seismic isolation. The result is expected to be used for further research on seismic capacity evaluation for water tanks.

Convergence Study on Damage of the Bonded Part at TDCB Structure with the Laminate Angle Manufactured with CFRP (CFRP로 제작된 적층각도를 가진 TDCB 구조물에서의 접착부의 파손에 관한 융합 연구)

  • Lee, Dong-Hoon;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.175-180
    • /
    • 2018
  • In this study, CFRP was manufactured with the laminate angle of $45^{\circ}$. The specimen of TDCB bonded with the adhesive for structure was designed by CATIA and the analysis was progressed by using the finite element analysis program of ANSYS. This study model was designed on the basis of British industry and ISO standard and the configuration factor(m) was established with variable according to the angle of model configuration. As the study result of this paper, the maximum deformations at the specimens with the tapered angles of $4^{\circ}$ and $8^{\circ}$ become most as 12.628 mm and least as 12.352mm respectively. Also, the maximum equivalent stresses at the specimens with the tapered angles of $6^{\circ}$ and $8^{\circ}$ become most as 9210.3 MPa and least as 4800.5 MPa respectively. The damage data of TDCB structure with the laminate angle which was manufactured with CFRP could be secured through this study result. As the damage data of TDCB structure bonded with CFRP obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.