• Title/Summary/Keyword: Finite Element Analyses

Search Result 2,405, Processing Time 0.033 seconds

Optimal Design for Injection Molding Processes using Design of Experiments and Finite Element Analysis (실험계획법과 유한요소해석을 연계한 사출성형 공정의 최적설계)

  • Park K.;Ahn J. H.;Choi S.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.150-153
    • /
    • 2001
  • The present work concerns optimal design for the injection molding process of a deflection yoke (coil separator). The optimal design for the injection molding process is developed using design of experiments and finite element analysis. Two design of experiments approaches are applied such as: the design of experiment for mold design and the design the experiments for determination of process parameters. Finite element analyses have been carried out as a design of experiments for mold design: runner system and cooling channel. In order to determine optimal process experiments have been performed for various process conditions with the design of experiments scheduling.

  • PDF

Finite Element Analysis for Extrusion of Hollow Shaped Section Through Square Die (평금형을 통한 중공형재 압출의 유한요소 해석)

  • Lee, Chun-Man;Lee, Seung-Hun;Jo, Jong-Rae
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.375-381
    • /
    • 1998
  • This paper presents development of finite element simulation program and analysis of hot extrusion through square dies with a mandrel. The design of extrusion dies is still an art rather than science. Die design for a new extrusion process is developed from through in-plant trials. In the present paper, a three-dimensional steady-state finite element simulation program is developed. Steady-state assumption is used for both the analyses of deformation and temperature. The developed program is effectively used to simulate hollow extrusion of several sections. Distributions of temperature effective strain rate, mean strain rate and mean stress are studied for an effective design of extrusion dies.

  • PDF

Using cable finite elements to analyze parametric vibrations of stay cables in cable-stayed bridges

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.691-711
    • /
    • 2006
  • This paper uses the finite element method to simultaneously consider the coupled cable-deck vibrations and the parametric vibrations of stay cables in dynamic analysis of a cable-stayed bridge. The stay cables are represented by some cable finite elements, which can consider the parametric vibration of the cables. In addition to modeling stay cables using multiple link cable elements, a procedure for removing the self-weight term of cable element is proposed. A eigenvalue analysis process using dynamic condensation method for sorting out the natural modes of the girder-tower vibrations and the Rayleigh damping considering element damping for damping matrix are also proposed for dynamic analyses of cable-stayed bridges. The possibilities of using cable elements and of using global and local vibrations to evaluate the parametric vibrations of stay cables in a cable-stayed bridge are confirmed, respectively.

Finite Element Analysis of Strain and Residual Stress in Weld Specimen (용접시편 변형률 및 잔류응력의 유한요소해석)

  • 양승용;구병춘;정흥채
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2004
  • This paper consists of two parts. One is finite element analysis of the redistribution of residual stresses of weld specimen by cutting. This work is necessary to predict the actual residual stress distribution of weld specimens used in fatigue test. The other subject is to calculate the relaxation of residual stress and the strain field induced by cyclic loading. To obtain fatigue life of weldment, the value of strain amplitude at each position is necessary, for example in the strain-life approach, and the numerical results can be used to verify experimental strain measurements. Thermo mechanical finite element analyses were conducted on the commercial package ABAQUS.

3D Finite Element-based Study on Skin-pass Rolling - Part I : Finite Element Analysis (3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part I : 유한요소해석)

  • Yoon, S.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Rolled products often have residual stresses or strip waves that are beyond the customer’s tolerance. To resolve this problem, skin-pass rolling is widely used during post-processing of such products. Because a short contact length compared to the strip width is a characteristic of skin-pass rolling, several numerical analyses have been previously conducted based on a two-dimensional approach. In the current study, a series of simulations was conducted using numerical analysis of three-dimensional elastic-plastic finite element method.

Efficient Vibration Simulation Using Model Order Reduction (모델차수축소법을 이용한 효율적인 진동해석)

  • Han Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.310-317
    • /
    • 2006
  • Currently most practical vibration and structural problems in automotive suspensions require the use of the finite element method to obtain their structural responses. When the finite element model has a very large number of degrees of freedom the harmonic and dynamic analyses are computationally too expensive to repeat within a feasible design process time. To alleviate the computational difficulty, this paper presents a moment-matching based model order reduction (MOR) which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary simulations with the reduced-size models. The moment-matching model reduction via the Arnoldi process is performed directly to ANSYS finite element models by software mor4ansys. Among automotive suspension components, a knuckle is taken as an example to demonstrate the advantages of this approach for vibration simulation. The frequency and transient dynamic responses by the MOR are compared with those by the mode superposition method.

Finite element Analysis for the Lamination Process of a Motor Core using Progressive Dies (순차이송 금형을 사용한 모터코어 적층과정의 유한요소해석)

  • Park, K.;Lee, I.S.;Jang, K.J.;Choi, S.R.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.618-623
    • /
    • 2000
  • In order to increase the porductivity of electrical parts, manufacturing processes using progressive dies have been widely used in the industry. Motor cores have been fabricated using progressive stacking die with the lamination procedure for better electro-magnetic property. for the proper design of a process, a prediction of the process is required to obtain many design parameters. In this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination process of the motor core. The effects of the embossing depth and the amount of deviation are investigated and compared with experiments. The forming process can then be predicted successfully from the results of analyses, which enables to design appropriately the die and the process.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

Heat transfer analysis of steel plate by moving coil in induction heating process (이동하는 유도가열 코일에 의한 강판의 열 유동 해석)

  • Yun, Jin-O;Yang, Yeong-Su;Gang, Dae-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.126-128
    • /
    • 2005
  • This paper presents a 3-D finite element analysis of a magneto-thermal coupled problem with moving conductor. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Transient finite element method for analysis of moving conductor needs many number of elements and much time to make calculation. Therefore, in this paper, finite element formulation derived from quasi-state is adopted. Finite element results were compared with the experimental results. The results demonstrate that this approach is suitable to solve the magneto-thermal coupled problem.

  • PDF

Crack Growth Analysis of Dissimilar Metal Weld using a Numerical Method (수치해석방법을 이용한 이종금속용접부에서의 균열성장해석)

  • Kim, Sang-Chul;Kim, Maan-Won
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.100-106
    • /
    • 2010
  • In this paper crack propagation analyses in the dissimilar metal weldment of a nozzle were performed using a finite element alternating method (FEAM). A two-dimensional axisymmetric finite element nozzle model was prepared and welding simulation including the thermal heat transfer analysis and the thermal stress analysis was performed. Initial cracks were inserted at weld and heat affected zone in the finite element model which has welding residual stress distribution obtained from the welding simulation. To calculate crack propagation trajectories of these cracks, a new fatigue crack evaluation module was developed in addition to the previous FEAM program. With the new FEAM fatigue crack evaluation module, crack propagation trajectory and crack growth time were calculated automatically and effectively.