• 제목/요약/키워드: Finite Difference Time Domain(FDTD)

Search Result 313, Processing Time 0.023 seconds

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.

A Study of Power Absorption in Human Head Exposed to Plane Wave (평면파에 노출된 인체 두부의 전력흡수 해석)

  • 이애경;조광윤;이혁재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.665-680
    • /
    • 1997
  • The specific absorption rate (SAR) distributions in various models of the human head have been analyzed when the models are exposed to 350 MHz and 900 MHz plane waves. The numerical analysis is performed with the finite-difference time-domain (FDTD) method. A homogeneous sphere including a cylinderical neck, a homogeneous head shaped model, and a heterogeneous realistic model are used as models of human head. The incident plane wave used for these calculations is propagating from the front to the back or from the back to the front of the head model, with its E-field vector orientation being parallel to the major length of the body. The specific findings are: 1) the average SARs of the three models are similar mutually but the local SARs of them differ greatly mutually; 2) the power is deposed more deeply in the head at 350 MHz, which is roughly the resonant frequency of a human head, than at 900 MHz; 3) for a plane wave propagating from the back, "hot spot" is found in the neck region, not in the head; 4) for a plane wave propagating from the front, "hot spot" is found in the nose at 900 MHz, and in the upper part of the lip and the jaw region at 350 MHz.

  • PDF

The Characteristics of Electric Field Distributions in a Reverberation Chamber using Cylindrical Diffuser (원통형 확산기를 사용한 전자파 잔향실내의 전기장 분포특성)

  • Lee, Yong;Rhee, Joong-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.121-127
    • /
    • 2008
  • This paper presents an electric field distribution in a reverberation chamber using cylindrical diffuser. The characteristics of electric field distributions are compared with QRD(Quadratic Residue Diffuser) and cylindrical diffuser for $1{\sim}3$ GHz frequency band. The FDTD(Finite-Difference Time-Domain) method is used to analyze the field characteristics, and the field uniformity. At 2 GHz, the standard deviation and the tolerance of test volume in the reverberation chamber are improved by 0.11 dB, 0.43 dB for the case of cylindrical diffuser. The field strength is increased by 43.2 dBmV/m vs QRD's of 36.6 dBmV/m. Comparing with QRD's, the characteristic of polarization is also improved. These results show that reverberation chamber using cylindrical diffuser can be used alternative facility for measurement of electromagnetic interference and immunity.

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee, Jung-Hoon;Chung, Young-Seek
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.169-174
    • /
    • 2005
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm we will show the numerical examples for the two-dimensional $TM^2$ cases.

  • PDF

FDTD Analysis of Lossy Multiconductor Transmission Lines Terminated in Linear Loads (선형소자로 종단된 손실이 있는 다중 전송선의 FDTD 해석)

  • 박범준;주재철;이형영;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.419-428
    • /
    • 2000
  • Multiconductor transmission line(MTL) equations are solved by FDTD(Finite-Difference Time-Domain) method to predict crosstalk and fields to transmission line coupling on lossy multiconductor transmission lines terminated in arbitrary linear loads. Skin effect losses as well as dc losses are included in the analysis. In order to increase computational efficiency, the convolution integral of internal impedance of conductors and the line currents is computed by using Prony method. For boundary conditions of MTLs terminated in linear loads, state-variable formulation is adopted. The simulated results by FDTD method are compared with the measured ones obtained by using TEM cell. The predictions are in good agreement with the measurements. In addition, it has been found that skin effect losses as well as dc losses of the conductors should be included for accurate predictions on relatively high loss transmission lines such as PCB. It has also been found that dc losses and skin-effect losses affect late-time responses and early-time responses, respectively.

  • PDF

A New Method to Estimate the Induced Electric Field in the Human Child Exposed to a 100 kHz-10 MHz Magnetic Field Using Body Size Parameters

  • Park, Young-Min;Song, Hye-Jin;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • In this paper, a new and simple method is proposed to quickly estimate the induced electric field in the human child exposed to a 100 kHz-10 MHz magnetic field, for the sake of electromagnetic field (EMF) safety assessment. The quasi-static finite-difference time-domain (FDTD) method is used to calculate the induced electric fields in high resolution 3D human child models with various body size parameters, in order to derive the correction factor for the estimation equation. The calculations are repeated for various frequencies and incident angles of the magnetic field. Based on these calculation results, a new and simple estimation equation for the 99th percentile value of the body electric field is derived that depends on the body size parameters, and the incident magnetic field. The estimation errors were equal to or less than 5.1%, for all cases considered.

Nano-Optical Investigation of Enhanced Field at Gold Nanosphere-Gold Plane Junctions

  • Ahn, Sung-Hyun;Park, Won-Hwa;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2200-2202
    • /
    • 2007
  • The local field distribution around gold nanosphere-gold plane junction has been studied using the finitedifference time-domain (FDTD) electrodynamics calculation procedure. We find that both the in-plane and out-of-plane polarized excitation produce enhanced field strong enough to explain the observed SERS activities of the junctions. Comparison with a simple dipole-image dipole model shows that the enhanced field primarily originates from the multipole-image multipole interaction, which indicates that the detailed fine-structures of the nanoparticles also play a significant role in the SERS activities as well.

Optimization of traveling-wave electroabsorption modulator using FDTD method (FDTD를 이용한 진행파형 전계 흡수 광 변조기 최적화)

  • Ok, Seung-Hae;Lee, Seung-Jin;Kong, Soon-Cheol;Yun, Young-Seol;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.37-45
    • /
    • 2002
  • In this paper, the microwave characteristics of traveling-wave electroabsorption coplanar waveguide modulator have been analyzed and optimized precisely by using the 3-dimensional finite-difference time-domain method (FDTD). Microwave characteristics are affected by the thickness of intrinsic layer, the width of meas, and the distance between signal electrode and ground electrode on traveling-wave type structure. In case that intrinsic layers are composed of InAsP/InGaP (1.3Q), the optimized distance between signal electrode and ground electrode, the optimized intrinsic region thickness and the width of waveguide are founded to be $3{\mu}m,\;039{\mu}m\;and\;2{\mu}m$, respectively, to minimize microwave loss and to obtain velocity and impedance matched structure. By using the FDTD, we could design the traveling-wave electroabsorption modulator more precisely.

Model-Based Detection of Pipe Leakage at Joints (모델 기반 파이프 연결부 누수 감지 시스템)

  • Kim, Taejin;Youn, Byeng D.;Woo, Sihyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.347-352
    • /
    • 2015
  • Time domain reflectometry (TDR) is widely used for wire failure detection. It transmits a pulse that is reflected at the boundaries of different characteristic impedances. By analyzing the reflected signal, TDR makes it possible to locate the failure. In this study, TDR was used to detect the water leakage at a pipe joint. A wire attached to the pipe surface was soaked by water when a leak occurred, which affected the characteristic impedance of the wet part, resulting in a change in the reflected signal. To infer the leakage from the TDR signal, we first developed a finite difference time domain-based forward model that provided the output of the TDR signal given the configuration of the transmission line. Then, by solving the inverse problem, the locations of the leaks were found.