DOI QR코드

DOI QR Code

Model-Based Detection of Pipe Leakage at Joints

모델 기반 파이프 연결부 누수 감지 시스템

  • Kim, Taejin (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Youn, Byeng D. (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Woo, Sihyeong (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 김태진 (서울대학교 기계항공공학부) ;
  • 윤병동 (서울대학교 기계항공공학부) ;
  • 우시형 (서울대학교 기계항공공학부)
  • Received : 2014.11.05
  • Accepted : 2015.01.08
  • Published : 2015.03.01

Abstract

Time domain reflectometry (TDR) is widely used for wire failure detection. It transmits a pulse that is reflected at the boundaries of different characteristic impedances. By analyzing the reflected signal, TDR makes it possible to locate the failure. In this study, TDR was used to detect the water leakage at a pipe joint. A wire attached to the pipe surface was soaked by water when a leak occurred, which affected the characteristic impedance of the wet part, resulting in a change in the reflected signal. To infer the leakage from the TDR signal, we first developed a finite difference time domain-based forward model that provided the output of the TDR signal given the configuration of the transmission line. Then, by solving the inverse problem, the locations of the leaks were found.

시간영역반사계(time domain reflectometry, TDR)는 한 쌍의 도선에 입력한 파동의 진행 및 반사 현상을 분석하여 도선의 상태를 감시하는 기술이다. 이를 이용하여 본 논문에서는 파이프 연결부의 누수 감지 시스템을 개발하였다. 파이프 표면에 설치된 도선을 통해 TDR 신호를 송신하면, 누수에 의해 도선의 특성 임피던스가 달라지는 지점에서는 반사가 일어나게 되고 이를 기반으로 누수의 발생지점을 추론할 수 있다. 이를 위해, 유한차분 시간영역법(finite difference time domain, FDTD)을 이용한 전진 모델을 만들고, 이의 역문제를 풀어 누수 위치를 추론하였다.

Keywords

References

  1. Hunaidi, O. and Giamou, P., 1998, "Ground-Penetrating Radar for Detection of Leaks in Buried Plastic Water Distribution Pipes," 7th International Conference on Ground-Penetrating Radar, pp. 783-786.
  2. Kang, B.-M. and Hong, I.-S., 2004, "A Study on a Leakage Sensing Pipe and Monitoring System Using TDR in GIS," Journal of Korea Multimedia Society, Vol. 7, No. 4, pp. 567-578.
  3. Gedney, S. D., 2011, Introduction to the Finite-DifferenceTime-Domain (FDTD) Method for Electromagnetics, Morgan & Claypool, California, pp. 21-37.
  4. Bishop, C. M., 2006, Pattern Recognition and Machine Learning, Springer, New York.
  5. Schuet, S., Timucin, D. and Wheeler, K., 2011, "A Model-Based Probabilistic Inversion Framework for Characterizing Wire Fault Detection Using TDR," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 5. 1654-1663. https://doi.org/10.1109/TIM.2011.2105030