• Title/Summary/Keyword: Finite Deformation

Search Result 3,011, Processing Time 0.029 seconds

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한 연구)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.563-568
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. The strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. The inner pressure of die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting, and can be applied in the die design for product with accurate dimension.

  • PDF

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.75-79
    • /
    • 2001
  • The study has been performed for the relation between die and product during forward extrusion by the experiment. Stains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die. The history of the deformation of the die and the product has been given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension as well as shape of the product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during the process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of the product at unloading and ejected states. In the present study, useful results for the deformation history of the die and the product were obtained through the experiment and Lame's formula in forward extrusion which can be applied to the die design for the product with accurate dimension.

  • PDF

Finite Element Formulation for the Finite Strain Thermo-Elasto-Plastic Solid using Exponential Mapping Algorithm : Model and Time Integration Scheme (지수 사상을 이용한 비선형 열-탄소성 고체의 유한요소해석 : 모델과 시간적분법)

  • 박재균
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • The linear analysis for the balance of linear momentum of a structure is relatively easy to perform, but the error becomes large when the structure experiences large deformation. Therefore, the material and geometric nonlinearity need to be considered for the precise calculations in that case. The plastic flow of a ductile steel-like metal mainly transforms its dissipated mechanical energy into heat, which transfers under the first and second law of thermodynamics. This heat increases the temperature of the material and the strength of the material decreases accordingly, which affects mechanical behavior of the given structure. This paper presents a finite-strain thermo-elasto-plastic steel model. This model can handle large deformation and thermal load simultaneously, which is common during earthquake periods. Two 3-dimensional finite element analyses verify this formulation.

Finite Element Study on Deformation Characteristics and Damage Evolution in Warm Backward Extrusion of AZ31 Mg Alloys (AZ31 마그네슘 합금의 온간 후방압출에서 변형특성과 결함성장에 관한 유한요소해석)

  • Yoon, D.J.;Kim, E.Z.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.614-620
    • /
    • 2007
  • Deformation characteristics and damage evolution during warm backward extrusion of bulk AZ31 Mg alloy were investigated using finite element analyses. AZ31 Mg alloy was assumed as a hardening viscoplastic material. The tensile tests of AZ31 Mg alloy in previous experimental works showed the ductile fracture even at the warm temperature of $175^{\circ}C$. In this study, damage evolution model proposed by Lee and Dawson, which was developed based on the growth of micro voids in hardening viscoplastic materials, was combined into DEFORM 2D. Effects of forming temperature, punch speed, extrusion ratio and size of work piece on formability in warm backward extrusion as well as on mechanical properties of extruded products were examined. In general, finite element predictions matched the experimental observations and supported the analyses based on experiments. Distributions of accumulated damage predicted by the finite element simulations were effective to identify the locations of possible fracture. Finally, it was concluded that the process model, DEFORM2D combined with Lee & Dawson#s damage evolution model, was effective for the analysis of warm backward extrusion of AZ31 Mg alloys.

Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force (전자기력을 이용한 박판 성형공정의 해석적 연구)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

3-D Finite Element Modeling of Fiber Reinforced Rubber Composites using a Rubber Element (리바요소를 이용한 섬유강화 고무기저 복합재료의 3차원 유한요소 모델링기법)

  • Jeong, Se-Hwan;Song, Jung-Han;Kim, Jin-Woong;Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1518-1525
    • /
    • 2006
  • Finite element analyses of structures made of the fiber reinforced composites require an adequate method to characterize the high anisotropic behavior induced by one or several layers of fiber cords with different spatial orientation embedded in a rubber matrix. This paper newly proposes a continuum based rebar element considering change of the orientation of the fiber during deformation of the composite. The mechanical behavior of the embedded fiber is modeled using two-node bar elements in order to consider the relative deformation and spatial orientation of the embedded fiber. For improvement of the analysis accuracy, the load-displacement curve of fiber is applied to the stiffness matrix of fiber. A finite element program is constructed based on the total Lagrangian formulation considering both geometric and material nonlinearity. Finite element analyses of the tensile test are carried out in order to evaluate the validity of the proposed method. Analysis results obtained with the proposed method provides realistic representation of the fiber reinforced rubber composite compared to results of other two models by the Halpin-Tsai equation and a rebar element in ABAQUS/Standard.

Curing Induced Residual Stresses in Laminated Cylindrical Shells

  • Lee, Soo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • A viscoelastic finite element analysis is presented to investigate residual stresses occurred in a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that can describe stress relaxation during the cure is derived as a recursive formula which can be used conveniently for a numerical analysis. The finite element analysis program is developed on the basis of a 3-D degenerated shell element and the first order shear deformation theory, and is verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual stresses in the laminated shell during the cure is investigated by performing both the viscoelastic and linear elastic analyses considering thermal deformation and chemical shrinkage simultaneously. The results show that there is big difference between viscoelastic stresses and linear elastic stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.

  • PDF

The Determination of Initial Blank Shape by Using the One-Step FEM (One-Step FEM을 이용한 초기 블랭크 형상 결정에 관한 연구)

  • Jung, Dong-Won;Lee, Sang-Je
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.21-28
    • /
    • 1999
  • In this paper, a finite element method for the determination of initial blank shape in sheet metal forming process will be introduced. The initial blank shape is determined by the only one step from the final to the initial blank. The used finite element inverse method adopted Henky's deformation theory, Hill's anisotropic yield criterion and simplified boundary conditions. Based on this theory. a three-dimensional membrane finite element code was developed. The developed code will be applied to several sheet metal forming examples for the demonstration of its validity.

  • PDF

Rubber Isostatic Pressing and Cold Isostatic Pressing of Metal Powder (금속 분말의 고무 등가압 성형과 냉간 정수압 성형)

  • Kim, Jong-Kwang;Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1076-1086
    • /
    • 2003
  • The effect of a rubber mould on densification behavior of aluminum alloy powder was investigated under cold isostatic compaction. A thickness of rubber mould and friction effect between die wall and rubber mould were also studied. The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze deformation of rubber. The elastoplastic constitutive equation of Shima and Oyane and that of Lee on densification were implemented into a finite element program (ABAQUS) to simulate densification of metal powder for cold isostatic pressing and rubber isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder under isostatic compaction.