• Title/Summary/Keyword: Finite Barrier

Search Result 149, Processing Time 0.025 seconds

Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle (너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측)

  • Lee, Seung Rim;Lee, Kyong Min;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • If LNG is leaked from 9% Ni steel inner tank by damage, LNG is retained by outer concrete tank. Then large tensile stress can be caused at cylindrical bottom of outer tank by temperature difference between outer and inner surface of outer tank. Therefore, in order to reduce the tensile stress is caused by temperature difference, corner-protection is installed with insulation and 9% Ni steel as a second barrier. In this paper, using finite element method, structural analysis was performed for rectangular and circular shape of knuckle and based on the results, fatigue life of welds of corner protection was predicted. As a consequence of structural analysis, safety factor of circular knuckle shows 33% bigger than rectangular one shows, and circular knuckle has 25% bigger fatigue life time than rectangle has. These results can be applied to life time assessment and design optimization in the future.

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

An Analysis of Formability of Micro Pattern Forming on the Thin Sheet Metal (마이크로 박판 미세 패턴 성형공정의 성형성에 대한 해석적 연구)

  • Cha, Sung-Hoon;Shin, Myung-Soo;Kim, Jong-Ho;Lee, Hye-Jin;Kim, Jong-Bong
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2009
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. The solar cell plate may have millions of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll-to-roll forming process. Also formability is analysed for various number of mesh, protrusion shapes and forming temperature.

Stress Conversion Factor on Penetration Depth of Knoop Indentation for Assessment of Nano Residual Stress (나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석)

  • Kim, Won Jun;Kim, Yeong Jin;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.95-100
    • /
    • 2019
  • Nanoindentation has been widely used for evaluating mechanical properties of nano-devices, from MEMS to packaging modules. Residual stress is also estimated from indentation tests, especially the Knoop indenter which is used for the determination of residual stress directionality. According to previous researches, the ratio of the two stress conversion factors of Knoop indentation is a constant at approximately 0.34. However, the ratio is supported by insufficient quantitative analyses, and only a few experimental results with indentation depth variation. Hence, a barrier for in-field application exists. In this research, the ratio of two conversion factors with variation in indentation depth using finite elements method has been attempted at. The magnitudes of each conversion factors were computed at uniaxial stress state from the modelled theoretical Knoop indenter and specimen. A model to estimate two stress conversion factor of the long and short axis of Knoop indenter at various indentation depths is proposed and analyzed.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Molecular Simulation Studies for Penetrable-Sphere Model : I. Equation of State (침투성 구형 모델에 관한 분자 전산 연구: I. 상태 방정식)

  • Kim, Chun-Ho;Suh, Soong-Hyuck
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.325-331
    • /
    • 2011
  • Molecular simulations via the molecular dynamics method have been carried out to an equation of state of penetrable-sphere model fluids over a wide range of packing fraction ${\phi}$ and finite repulsive energy ${\varepsilon}^*$. The resulting simulation data are compared to theoretical predictions from the two limiting cases of high- and low-penetrability approximations available in the literature. A good agreement between theoretical and simulation results is observed ill the case of ${\varepsilon}^*$ <3.0. However, for the highly repulsive energy systems of ${\varepsilon}^*{\geqq}3.0$, where the potential energy barrier is more than two times higher than the particle kinetic energy, a poor agreement is found due to the clustering formation and the non-continuum size effects in the dense systems of ${\phi}{\geqq}0.7$ and ${\varepsilon}^*$=6.0.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

Development of a Korean Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼 (ECHOS) 개발)

  • Kwon Oh-Wook;Kwon Sukbong;Jang Gyucheol;Yun Sungrack;Kim Yong-Rae;Jang Kwang-Dong;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.498-504
    • /
    • 2005
  • We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.

A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions (고압터빈 노즐에서 입구온도분포와 장착조건에 따른 저주기 피로 수명 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho;Seo, Do Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1145-1151
    • /
    • 2015
  • High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.