• Title/Summary/Keyword: Finishing Materials

Search Result 894, Processing Time 0.026 seconds

A Study on the Process of Estimating the Amount of Materials for Client's Decision-Making Support in Space Programming Stage of Pre-design BIM -focusing on Building Interior Finishing- (건축 기획 BIM의 공간 프로그래밍 단계에서 발주자 의사결정지원을 위한 물량예측 방법론에 관한 연구 -건축마감을 중심으로-)

  • Jun, Yeong-Jin;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.10 no.3
    • /
    • pp.19-28
    • /
    • 2010
  • The construction projects are recently having changes in their magnitude and complexity. Therefore, the amount of information created and managed by participants over project phases is enormous and this may cause difficulties in consistent and integrated data management. Because of the change in construction projects, there is a need to apply more logical and systematic ways to deal integrated data management. For the solution to this, BIM(Building Information Modeling), a new paradigm for integrated management of the information over project life-cycle, has been seriously considered. Also, the Korean Public Procurement Service announced that project over 50 billion Korean Won should introduce BIM into procurement starting from 2012. However, the studies and development have lack on studies of applying BIM and managing the data made using BIM in pre-design and maintenance stage. In pre-design stage, the concept of schematic design model is made to support for making major decisions concerning the size, shape and cost of the project. To decide the cost for the building in this stage by making use of BIM, estimating the amount of building materials used for constructing should be preceded. In this study, the pre-design BIM is explained to gain a better understanding of its process, since this paper focused on space programming stage. Finally, the paper suggests the concept process of estimating the amount of materials in building interior finishing from selecting the type for the elements of each space made to support the client for making decisions in space programming stage based on pre-design BIM.

A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials (CFRP/금속간 접합력 강화를 위한 접합공정 연구)

  • Kwon, Dong-Jun;Park, Sung-Min;Park, Joung-Man;Kwon, Il-Jun
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.416-421
    • /
    • 2017
  • The structural adhesive have been manufactured for improvement of bonding process between CFRP and metal. The optimal condition for bonding process were investigated by evaluating the lap shear strength with amount of adhesive and curing time and the surface treatment of the CFRP. To confirm proper adhesion conditions, the fracture sections between CFRP and metal was observed using reflection microscope. Not only the improvement of the adhesion condition was important, but surface treatment on CFRP was also important. The optimal curing temperature was at $180^{\circ}C$ for 20 minutes. The improvement for adhesive property was confirmed After surface treatment on CFRP. The optimal amount of structural adhesive for bonding between CFRP and metal was $1.5{\times}10^{-3}g/mm^2$. Through the optimization of bonding process, the improvement of mechanical property over 10% is confirmed in comparison with existing adhesive.

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Characteristics Analysis of Nano-composites Films Using Extruder (압출성형기를 이용한 나노복합재 필름의 특성 분석)

  • Kwon, Il-Jun;Park, Sung-Min;Yoo, Sung-Hun;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • Polypropylene(PP)/multiwalled carbon nanotubes(MWCNT) nanocomposites films and PP/poly(vinyl alcohol)/CNT nanocomposites films were prepared through melt mixing method by the extruder. The PP/CNT nanocomposites films, which contain CNT of a variable content, were prepared for the first time and research on a appropriate content of the CNT on the PP/CNT nanocomposites films was conducted. The effects of take-up speed of the extruder on the mechanical and chemical properties of the PP/CNT and PP/PVA/CNT nanocomposites film were studied. Field emission scanning electron microscope(FE-SEM) was used to examine the surface morphology and the DSC measurement and tensile test were conducted. It was found that the properties decreased when take-up speed was increased.

Dyeing properties of cationic dye on polyamide fibers using syntan treatment (Syntan 처리에 의한 폴리아마이드 섬유의 캐티온 염료 염착특성)

  • Park, Young-Min;Kim, Byung-Soon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.12-16
    • /
    • 2007
  • Exhaustion increase using cationic dyes on polyamide fibers are not easy work due to the limited amounts of the functional end groups(-COOH) in the substrates. Therefore, to enhance dye exhaustion, polyamide fibers are required to be modified onto desired surface properties of the fibers using anionic bridging agent. In this study, synthetic tanning agent for pre-treatment finishing and cationic dye(berberine chloride) for dyeing of polyamide fibers were used. For surface modification, polyamide fibers were pre-treated with synthetic tanning agent at various concentrations and temperatures. The increased concentration and temperatures of synthetic tanning agents had resulted in exhaustion increase. The modified polyamide substrates skewed increased cationic dyeing exhaustions and the corresponding dyeing results from treated samples represented higher exhaustion properties than those of non-treated counterpart. The increased dyeing effects of cationic dye can be attributed to the supplied ionic interaction and electrostatic attraction sites on the surface of polyamide substrates.

Characteristics of VOCs Emission According Interior Finish Materials and Working Phases of New Apartments (신축 아파트의 실내 마감재 변경 및 시공단계별 휘발성유기화합물 발생 특성)

  • Pang, Seung-Ki;Cho, Woo-Jin;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.486-492
    • /
    • 2006
  • In this research, IAQ is measured to evaluate the emission performance of VOCs in three new apartment houses finished by totally EFMs (Environmental Friendly Material), partially installed EFMs and general materials. Among various VOCs, Target pollutants for the IAQ measurement are benzene, ethylbenzene, toluene, xylene, 1,4-Dichlorobenzene and formaldehyde. The measurement is conducted one day after each interior finishing material is worked over by construction schedule. The result of this research concluded that (1) Except toluene, the concentration levels of each pollutant did not exceed the national IAQ standards in all test residences, (2) As the interior finishing work schedule, A toluene level peaked when the furniture installing was ended. (3) The toluene concentration level of the house installed general interior materials as the non-EFMs furniture was one and half higher than other houses. Consequently, installing. the furniture made by EFMs is one of effective methods to improve the IAQ for new apartment houses.

A Study on Properties of the Glass Fiber Reinforced PPS Composites for Automotive Headlight Source Module (자동차 전조등 광원 모듈용 유리섬유강화 PPS 복합재료 특성 연구)

  • Heo, Kwang-Yeol;Park, Sung-Min;Lee, Eun-Soo;Kim, Myung-Soon;Sim, Ji-Hyun;Bae, Jin-Seok
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.293-298
    • /
    • 2016
  • In this paper, Glass Fiber Reinforced Thermoplastic (GFRTP) for automotive headlight source module was fabricated by compounding and injection molding using PPS (Poly Phenylene Sulfide) resin with glass fiber which has three cross section (round type, cocoon type, flat type). Tensile, flexural, impact properties were investigated on effect of cross section, glass fiber contents. And it was observed flatness, dimensional stability, fluidity depending on glass fiber cross section. As a result, flat glass fiber reinforced thermoplastic's mechanical properties were most excellent. Also, dimensional stability and flatness showed better results when using flat glass fiber.

Improving the Photo-stability of p-aramid Fiber by TiO2 Nanosol (TiO2 sol-gel 합성에 의한 파라 아라미드 섬유의 내광성 증진 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Sim, Ji-Hyun;Lee, Jae-Ho;Kim, Sam-Soo;Lee, Mun-Cheul;Choi, Jong-Seok
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • Although para-aramid fibers poss higher mechanical properties, they show very low resistance to sunlight exposure. This paper studied on the effect of nano-sol coated $TiO_2$ to improve the photo-stability of p-aramid fibers. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio ($H_2O$/titanium iso-propoxide). All samples were characterized by XRD, TEM and UV-vis spectrometer. The mechanical properties of p-aramid fabrics by $TiO_2$ nano-sol coating before and after sunlight irradiation were measured with tensile tester. XRD pattern of titanium dioxide particles was observed by mixing phase together with rutile and anatase type. The results showed, after sunlight irradiation, the decreased mechanical properties of the fiber. Furthermore, the sunlight irradiation obviously deteriorated the surface and defected areas of the fiber severely by photo-induced chain scission and end group oxidation in air.

Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material (건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

Evaluation of the Radon Contribution Rate in Apartments through Evaluation of the Radon Exhalation Rate from Building Materials (건축자재 라돈 방출률 평가를 통한 공동주택 내 라돈 기여율 평가)

  • Hong, Hyungjin;Choi, Jiwon;Yoon, Sungwon;Kim, Heechun;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.425-431
    • /
    • 2021
  • Background: This study evaluated the radon contribution rate through an evaluation of the exhalation rate of radon from building materials. Objectives: This study compared and evaluated the computation of the radon contribution rate based on each different exhalation rate in a building. Methods: The six demonstration houses that are the subject of this study are wall structures or Rahmen structures, and include demonstration houses similar to general residential environments and non-finishing houses with some walls exposed. Results: The highest exhalation rate was found at 62.98 Bq/m2 per day from the non-finishing floor, and the second highest exhalation rate was from stone materials at 58.76 Bq/m2 per day. Based on this result, investigating the contribution rate of building materials derived from building materials among indoor radon concentrations, house three was the highest at 81.7%, and house one was confirmed to be 33.96%. Conclusions: It can be judged that the effect of exposed concrete and stone is high, and that it is possible to reduce radon emitted from indoor building structures by controlling the indoor materials.