• Title/Summary/Keyword: Fineness modulus

Search Result 79, Processing Time 0.028 seconds

The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate (혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성)

  • Kim, Tae Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • In this paper, the performance of alkali-activated slag cement (AASC) is assessed in terms of compressive strength and drying shrinkage, using three different types of silica sand and river sand. The sand type has an important influence on the properties of AASC mortar. Three silica sands (SS1, SS2 and SS3) and river sand (RS) were considered. Three series of blended sands have been tested. A first series (S1) with RS and SS1, a second series (S2) with RS and SS2 and third series (S3) with RS and SS3 with a different blended ratios. The result shows a very significant influence of the blended sand on the AASC mortar properties. The compressive strength and drying shrinkage related with the particle sizes and blended ratios of sands are investigated considering blended sand properties like fineness modulus (FM) and relative specific surface. The type and blended ratio of sand seems to have very significant and important consequences for the mix design of the AASC mortar.

Application of Discoll Method to Blend Fine Aggregate for Concrete (콘크리트용 잔골재 혼합을 위한 Driscoll 방법의 적용)

  • Lee, Seong Haeng;Ham, Hyeong Gil;Kim, Tae Wan;Oh, Yong Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2011
  • Recently depletion of natural resources makes a deficiency of sand aggregation in the concrete works. In this study, the quality characteristics of concrete and aggregate according to blending fine aggregate in the river sand and the crash sand was analyzed by Normal method and Driscoll method which has used mixing of fine aggregate for asphalt mostly. Application of Discoll method to blend fine aggregate for concrete was studied in the first step to blend fine aggregates concrete. The fineness modulus, grading, slump, air content and compressive strength were tested by the two method, the results of Driscoll method was very similar to degree of err limits in comparison with those of Normal method in the same condition. As a result, Driscoll method is reasonable to use the fine aggregates mixture for concrete in river sand and crash sand.

An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand

  • Danial Jahed Armaghani;Haleh Rasekh;Panagiotis G. Asteris
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • Waste foundry sand (WFS) is the waste product that cause environmental hazards. WFS can be used as a partial replacement of cement or fine aggregates in concrete. A database comprising 234 compressive strength tests of concrete fabricated with WFS is used. To construct the machine learning-based prediction models, the water-to-cement ratio, WFS replacement percentage, WFS-to-cement content ratio, and fineness modulus of WFS were considered as the model's inputs, and the compressive strength of concrete is set as the model's output. A base extreme gradient boosting (XGBoost) model together with two hybrid XGBoost models mixed with the tunicate swarm algorithm (TSA) and the salp swarm algorithm (SSA) were applied. The role of TSA and SSA is to identify the optimum values of XGBoost hyperparameters to obtain the higher performance. The results of these hybrid techniques were compared with the results of the base XGBoost model in order to investigate and justify the implementation of optimisation algorithms. The results showed that the hybrid XGBoost models are faster and more accurate compared to the base XGBoost technique. The XGBoost-SSA model shows superior performance compared to previously published works in the literature, offering a reduced system error rate. Although the WFS-to-cement ratio is significant, the WFS replacement percentage has a smaller influence on the compressive strength of concrete. To improve the compressive strength of concrete fabricated with WFS, the simultaneous consideration of the water-to-cement ratio and fineness modulus of WFS is recommended.

An Experimental Study on the Stregth characteristics of Mortar using the Blast-Furnace Slag Sand (서냉슬래그 모르터의 강도특성에 관한 연구)

  • 임남기;김종락;김성식;김영회;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.60-65
    • /
    • 1998
  • This experimental Study presents the strength properties of mortar Using the Blast-furnace Slag Sand. It gives following result. The 3-days and 7-days compression strength is increase as substitution rate is higher. As W/C ratio increase, the strength is decrease. The flexural strength is increase as substitution rate is higher specially. As flexural strength ratio for compression strength is each 16.7%, 21.1%, 25.4% on 3-days, 7-days, 28-days, long age flexural strength is higher than short age.

  • PDF

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

The Influence of the Properties of Crushed Stone Sand on the Mixing Factor and Compressive Strength of Concrete (부순모래의 품질특성이 콘크리트의 배합인자 및 압축강도에 미치는 영향)

  • Hong Ji Hoon;Yum Jun Haun;Choi Jin Man;Jeong Yang;Lee Seong Yeun;Yeo Byung Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.623-626
    • /
    • 2005
  • This study is aimed for investigating the influence of the properties of crushed stone sand on the mixing factor and compressive strength of concrete. The results of this study are as follows; The influence of Particle Shape and Very Fine Sand(VFS) of crushed stone sand on the mixing factor was higher than Fineness Modulus. The demand water of concrete with crushed stone sand was decreased about $12\~18kg/m^3$with increasing $4\%$ of Particle Shape and increased $8\~15kg/m^3$ with increasing $3\%$ of ratio of Very Fine Sand(VFS).

  • PDF

An Experimental Study on the Physical Properties of Porous Cement Concrete Using Blast-furnace Slag as an Admixture (고로슬래그를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 과한 실험적 연구)

  • 심종우;채창우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.144-149
    • /
    • 2000
  • Porous cement concrete was developed to prevent hydroplaning of airway pavement or to reduce noise emission in highway. In has been introduced in domestic since early 1980' and applied to a pedestrian road or bike way. The concrete, however, has problems such as lack of optimized mix design, low strength and deterioration, etc. The purpose of this study is to manufacture porous cement concrete using blast-furnace slag to enhance mechanical properties. The results of this study are as follows; the compressive strength range is 102∼247kgf/㎠, the tensile strength range is 16∼70kgf/㎠, the bending strength range is 43∼70kgf/㎠, and the coefficient permeability range is 6.79 ×10-2∼1.17∼10-1cm/sec. To develope high-performance porous concrete, further studies are needed on optimum mixture of fineness modulus and admixture.

  • PDF

Physical Properties of Concrete mixed with Fine Sand and Copper Slag (동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성)

  • 이진우;김경민;배연기;이재삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

An Experimental Study on the Fludity of High Flowing Concrete according to the Fineness Modulus of Fine Aggregate (세골재의 조립율에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • 박유신;강석표;조성현;최세진;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In the mixing proportion of high flowing concrete we have to use quantity of power such as cement and superplasticizer, and increase the proportion of fine aggregate more than that of plain concrete to increase flowability and segregation resistance. Therefore, the fresh state of high flowing concrete is largely affected by superplasticizer and change of grade the percentage of surface water. This study aims at development of self-filling up high flowing concrete without compaction, in case of using the fine aggregate of standard grade range, by examination on the influence of fresh state of high flowing concrete, and by understanding influence on various fluidity such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

An Experimental Study on the Physical Properties of Porous Cement Concrete Using Polymer as an Admixture (폴리머를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 관한 실험적 연구)

  • 채창우;민병렬;심종우
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.131-139
    • /
    • 2000
  • Porous Concrete usually contains large amount of voids(about 10∼20%) after compaction so that it has relatively high permeability. It has been introduced in domestic since early 1980's but it has problems such as lack of optimized mixture, low strength and durability, and other defects, etc. The purpose of this study is to manufacture high-performance porous concrete using polymer to enhance the mechanical properties. The results of this study are as follows; the compressive strength range 12 92∼207kgf/㎠, the tensile strength range is 14∼28kgf/㎠, the bending stength range is 42∼73kgf/㎠, and the coefficient permeability range is 5.77×10-2∼6.79×10-1cm/sec. To develope high-performance porous concrete. further studies are needed on optimum mixture of fineness modulus and admixture.