• Title/Summary/Keyword: Fine-wire

Search Result 134, Processing Time 0.026 seconds

Wire Drawing Process Design for Fine Rhodium Wire (로듐 미세 와이어 인발공정 설계)

  • Lee, I.K.;Lee, S.Y.;Kim, D.H.;Lee, J.W.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.244-249
    • /
    • 2018
  • Rhodium is a representative platinum group material. Rhodium is used in several industrial fields including jewelry, chemical reaction catalyst, electric component etc. In recently, ultra-fine rhodium wire has been applied to the pins of probe card used to test a semiconductor. In this study, in order to produce a fine rhodium wire with the diameter of $50{\mu}m$, a fine rhodium wire drawing process was designed. After design of the fine wire drawing process by using a uniform reduction ratio theory, finite element analysis was performed. Finally, fine wire drawing experiment was performed to verify the effectiveness of the designed process.

Fabrication of Ultra-fine Rhodium Wire Using Multi-pass Wire Drawing Process (다단 신선공정을 이용한 초극세 로듐 와이어 제조)

  • Lee, S.K.;Lee, S.Y.;Lee, I.K.;Hwang, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.275-280
    • /
    • 2019
  • The aim of this study is to fabricate an ultra-fine pure rhodium wire using multi-pass wire drawing process. To manufacture $30{\mu}m$ ultra-fine rhodium wire from the initial $50{\mu}m$ wire, a multi-pass wire drawing process was designed based on the uniform reduction ratio theory. The elastic-plastic finite element analysis was then conducted to validate the efficacy of the designed process. The drawing load, drawing stress, and the distribution of the effective strain were evaluated using the finite element analysis. Finally, the wire drawing experiment was performed to validate the designed wire drawing process. From the results of the experiment, the diameter of the final drawn wire was found to be $29.85{\mu}m$.

Multi-Filament Hydrostatic Extrusion and Fine Wire Dieless Stretching Technology (미세 다심선 정수압 압출 및 단선 무금형 신장 성형 기술)

  • Park, Hoon-Jae;Kim, Chang-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.79-85
    • /
    • 2006
  • Multi-filament hydrostatic extrusion was developed as a fine wire manufacturing process and wire forming experiments were conducted. Also, single wire stretch forming process was proposed in the possibility of obtaining long wire with constant cross-section. In the multi filament extrusion since the workpiece, die and forming facility are in the macro forming circumstance, fine wire and fine hole structure with less than a few micrometer can be easily obtained. Although stretch forming does not use a die in order to avoid the friction problem between the workpiece and the die, it is necessary to have high level of technology to maintain cross-sectional shape and measure in longitudinal direction.

  • PDF

FE-simulation of Drawing Process for Al-1%Si Bonding Wire Considering Fine Si Particle (미세 Si 입자를 고려한 Al-1%Si 본딩 와이어의 신선공정해석)

  • Ko, D.C.;Hwang, W.H.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.421-427
    • /
    • 2006
  • Drawing process of Al-1%Si bonding wire considering fine Si particle is analyzed in this study using FE-simulation. Al-1%Si boding wire requires electric conductivity because Al-1%Si bonding wire is used for interconnection in semiconductor device. About 1% of Si is added to Al wire for dispersion-strengthening. Distribution and shape of fine Si particle have strongly influence on the wire drawing process. In this study, therefore, the finite-element model based on the observation of wire by continuous casting is used to analyze the effect of various parameters, such as the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle on wire drawing processes. The effect of each parameter on the wire drawing process is investigated from the aspect of ductility and defects of wire. From the results of the analysis, it is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-1 %Si wire.

Fine Wire Extrusion Technology (극세선 압출 기술 개발)

  • Kim S. S.;Park H. J.;Jun D. J.;Lim S. J.;Choi T. H.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.97-101
    • /
    • 2001
  • Fine metal (Au, Ag, Cu) wire was extruded with hydrostatic extrusion process in cold condition. A vertical type 900kN hydrostatic extruder has been developed. The extruder was facilitated with high pressure container which are available for hot and cold forming. The container endured 1400MPa internal pressure and extrusion ratio To was achieved in cold forming for Au fine wire which had $600{\mu}m$ diameter. In contrast to the conventional macroscopic-sized-billet fine-wire requires higher extrusion pressure and effect of friction is much more significant.

  • PDF

Development of Hot Hydrostatic Extruder for Fine Wire and Tube (극세선 및 미세 튜브 압출 장치 개발)

  • Na K. H.;Park H. J.;Kim S. S.;Yun D. J.;Choi T. H.;Kim E. Z.;Cho N. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.239-244
    • /
    • 2001
  • Hot hydrostatic extruder was developed. The main objective of the development is forming fine wire and tube. On account of effectiveness and high performance, the extruder was designed to have double action. Therefore the main cylinder and mandrel can be driven independently. To cope with severe condition of high temperature and pressure, wire-wound container equipped with heater was used. Sealing technique also is important in this process, so seal ring was made of super-elastic metal. Another key for successful forming is choice of proper pressure medium. Fine wire and tube produced by the extruder can be used in semiconductor industry and medicine.

  • PDF

Recycling of Wastepaper(IX)-Effects of KOCC Fines and Other Contamination on Condebelt Press Drying System- (고지재생연구(제 9보)-국산 골판지 고지 내의 미세분 및 이물질들이 Condebelt Press Drying System에 미치는 영향-)

  • 지경락;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • In Condebelt press drying system, the temperature difference between top and bottom plate of Condebelt transfers water to bottom side, Fine fibers, stickies , ink , and various inorganic materials are also migrated to the fine wire located at the bottom plate by highly pressurized moisture flow. As a result, the fine wire contaminated by plugging of these fine and sticky materials can cause many problems such as blistering or partial crushing of paper. The contaimination of fine wire leads to a deterioroated strength together with uneven physical properties of paper. In this paper, froth-flotatiion method, which is commonly used in the field of ONP recycling process, were adopted to separate the contaminants in KOCC as a new fiber fractionation method. Standard deviation of paper strength and brighteness decreased of Condebelt fine wire were measured to investigate the effect of contaminants removal . The standard deviations of paper strength obtained from the flotated accept were not dependent on the number of condebelt press drying . However, in the case of untreated KOCC, the standard deviations were increased as press drying repeated. This indicates that the contaminant gives uneven physical properties to the paper by wire plugging . Optical and SEM images clearly illustrate the effect of contaminants on the wire condition.

  • PDF

Unidirectionally Solidified Cu Rod Fabrication Using Continuous Casting Apparatus with Cooled Mold (냉각주형식 연속주조장치에 의한 일방향응고 Cu 선재의 제조)

  • Cho, Hoon;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.198-203
    • /
    • 2009
  • In order to manufacture copper ultra fine wire used for bonding wire in integrated circuit package, continuous casting process, which can produce high purity copper rod with small cross section, and wiredrawing process have to be optimized to prevent wire brakeage during entire manufacturing process of fine wire. The optimum condition for producing copper rod with mirror surface has to established by investigation of the effects of several parameters such as withdrawal speed, superheat and rod diameter on grain morphology of the cast rod and on its drawing characteristics to fine wire. The purpose of this study is to propose the optimized process parameters in continuous casting process in order to produce cast rod without internal defects, and to predict microstructure orientation suitable for wire drawing process.

A Study on the Fine Wire Drawing Process Design to Improve the Productivity (생산성 향상을 위한 세선 인발공정설계에 관한 연구)

  • Lee, S.K.;Kim, B.M.;Kim, M.A.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • The control of wire temperature is very important in the fine wire drawing process. The wire speed should be increased, and the wire temperature should be dropped as much as possible. Up to now, the process design of wire drawing process depends on the experiences of experts. In this study, a wire drawing process design method was proposed to increase the productivity. The proposed method of this study includes the pass schedule and the design of a multi pass wire drawing machine. A pass schedule was performed based on the calculation of the wire temperature. Also, a new multi pass wire drawing machine was manufactured to apply the designed pass schedule. Through the wire drawing experiment, the effectiveness of the proposed process design method was evaluated. The final drawing speed was increased from 1,100m/min to 2,000m/min without deterioration of final drawn wire.

Analysis of wet Wire Drawing Process and Pass Redesign to Reduce Wire Breakage (습식 신선공정 해석 및 단선율 저감을 위한 패스 재설계)

  • 이상곤;김민안;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1034-1037
    • /
    • 2002
  • Wet wire drawing process is used to produce fine wire in the industrial field. The production of fine eire by using wet wire drawing process with appropriate dies pass schedule would be impossible without understanding of relationship between process parameters such as material properties, dies reduction, friction conditions, drawing speed etc. However, up to new, dies pass schedule of wet wire drawing process has performed by trial and error of expert. Therefore, this study investigates the relationship between process parameters quantitatively and analyzes a conventional wet wire drawing process. Using the results, the conventional pass schedule can be redesigned to reduce the wire breakage during wet wire drawing. To verily the result of this study, the wet wire drawing experiment was performed. And the results between conventional process and redesigned pass schedule were compared. As the comparison of results, the wire breakage was considerably reduced in the redesigned pass schedule more than conventional pass schedule.

  • PDF