• Title/Summary/Keyword: Fine particles concentration

Search Result 318, Processing Time 0.024 seconds

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF

Assessment of Particle Size Distribution and Pollution Impact of Heavy metalsin Road-deposited Sediments(RDS) from Shihwa Industrial Complex (시화산업단지 도로축적퇴적물의 입도분포 및 중금속 오염영향 평가)

  • Lee, Jihyun;Jeong, Hyeryeong;Ra, Kongtae;Choi, Jin Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.8-25
    • /
    • 2020
  • Industrialization has increased the production of road-deposited sediments (RDS) and the level of heavy metals in those RDS, which can have a significant impact on the surrounding aquatic environments through non-point pollution. Although the relationship between contamination characteristics and particle size of RDS is important for pollution control, there is very little information on this. In this study, we investigated the characteristics of grain size distribution and heavy metal concentrations in the road-deposited sediments (RDS) collected from 25 stations in Shihwa Industrial Complex. The environmental impact of RDS with particle size is also studied. Igeo, the contamination assessment index of each metal concentration, represents the RDS from Shihwa Industrial Complex are very highly polluted with Cu, Zn, Pb and Sb, and the levels of those metals were 633~3605, 130~1483, 120~1997, 5.5~50 mg/kg, respectively. The concentrations of heavy metals in RDS increased with the decrease in particle size. The particle size fraction below 250 ㎛ was very dominant with mass and contamination loads, 78.6 and 70.4%, respectively. Particles less than 125 ㎛ of RDS were highly contaminated and toxic to benthic organisms in rivers. RDS particles larger than 250 ㎛ and smaller than 250 ㎛ were contaminated by the surrounding industrial facility and vehicle activities, respectively. As a result of this study, the clean-up of fine particles of RDS, smaller than 125-250 ㎛, is very important for the control and reduction of non-point pollution to nearby water in Shihwa Industrial Complex.

An Analysis of Aerosol Mass Concentrations and Elemental Constituents Measured at Cheongwon depending on the Backward Trajectories of Air Parcel in East Asia in 2011 (2011년 동아시아에서 기류의 이동 경로에 따른 청원에서 측정한 에어로졸 질량 농도 및 원소 성분 분석)

  • Kim, Hak-Sung;Byun, Kwang-Tae;Chung, Yong-Seung;Choi, Hyun-Jung;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.855-863
    • /
    • 2012
  • This study analyzed mass concentrations of TSP, PM10 and PM2.5 and elemental constituents according to the isentropic backward trajectories of air parcel from Cheongwonin East Asia during the period January - October, 2011. Mass concentrations of the continental polluted airflow (CP) showed levels of TSP and PM10 mass concentrations higher than the continental background airflow (CB). Also, PM2.5 mass concentrations of anthropogenic fine particles ran higher in CP than in CB. The elemental constituents and elemental constituent ratio ended up varying depending on the origin of atmospheric aerosols generated. The average absolute content of elemental constituents reached its height in CB, the ratio of anthropogenically originating elements (PE) among the all elements (AE) analyzed marked a high in CP, and Mg+Na/AE reached its height in the oceanic airflow (OA). At the same time, TSP, PM10 and PM2.5 mass concentrations, the ratio of PM2.5/TSP and PE/AE element ratio ran higher in CP than CB. Episodes of large-scale transport of atmospheric pollutants as observed at Cheongwon were 8 cases and 22 days. The ratios of PM10, PM2.5 among TSP mass concentrations showed different results and the ratios of PM2.5 showed an increasing trend in the episodes of anthropogenic air pollution transport. Overall, dustfall episodes show a level of elemental constituents higher than those of anthropogenic air pollution.Dustfall episodes were observed to contain more of Fe, Al and Ca originating from continental soils and those of air pollution were observed to contain more of Zn, Mn, Cu and Pb. By difference in contents of absolute elemental constituents, episodes of anthropogenic air pollution showed a high PE/AE rate, and dustfall episodes a high SE/AE rate.

Assessment of Metal Pollution of Road-Deposited Sediments and Marine Sediments Around Gwangyang Bay, Korea (광양만 내 도로축적퇴적물 및 해양퇴적물의 금속 오염 평가)

  • JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.42-53
    • /
    • 2020
  • In this study, heavy metal in road-deposited sediments (RDS) and marine sediment around Gwangyang Bay area have been investigated to assess the pollution status of metals and to understand the environmental impact of RDS as a potential source of metal pollution. Zn concentration for <63 ㎛ size fraction was the highest (2,982 mg/kg), followed by Cr, Ni, Pb, Cu, As, Cd, and Hg. Metal concentrations in RDS increased with decreasing particle size and relatively higher concentrations were observed around the metal waste and recycling facilities. For particle size in RDS smaller than 125 ㎛, EF values indicated that Zn was very high enrichment and Cr, Cd, Pb were significant enrichment. The concentrations of metals in marine sediments were mostly below the TEL value of sediment quality guidelines of Korea. However, the Zn concentrations has increased by 30~40% compared to 2010 year. The amounts of Zn, Cd and Pb in less than 125 ㎛ fraction where heavy metals can be easily transported by stormwater runoff accounted for 54% of the total RDS. The study area was greatly affected by Zn pollution due to corrosion of Zn plating materials by traffic activity as well as artificial activities related to the container logistics at Gwangyang container terminal. The fine particles of RDS are not only easily resuspended by wind and vehicle movement, but are also transported to the surrounding environments by runoff. Therefore, further research is needed on the adverse effects on the environment and ecosystem.

High Ferrihydrite Turbidity in Groundwater of Samdong-Myeon (Ulsan) by Carbonate-Water Inflow of Deep Origin (심부 탄산수의 유업에 의한 울산시 삼동면 지하수의 높은 페리하이드라이트 탁도)

  • Jeong, Gi-Young;Kim, Seok-Hwi;Kim, Kang-Joo;Jun, Seong-Chun;Ju, Jeong-Woung;Choi, Mi-Jung;Cheon, Jeong-Yong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2011
  • The turbidity in several wells of Samdong-myeon, Ulsan, exceeded potable groundwater standard (1 NTU). Mineralogical analysis showed that the fine suspended particles are ferrihydrite spheres with a size of less than $0.5\;{\mu}m$ and helical iron-oxidizing bacterial filaments, and their aggregates. Ferrihydrite was almost amorphous only showing two electron diffraction rings, and contained Si and P. Helical bacterial filaments were almost replaced by ferrihydrite. The helical bacteria have played an important role in the ferrihydrite formation by becoming the loci for ferrihydrite precipitation as well as oxidizing ferrous iron. The physicochemical conditions of low pH, low redox potential, high Ca concentration, and high alkalinity are consistent with the hydrogeochemical characteristics of carbonate groundwater, implicating that the inflow of deep ferriferous carbonate groundwater and its oxidation have caused the ferrihydrite turbidity in several wells of the study area.

Respiratory Health Effects of Fine Particles(PM2.5) in Seoul (서울시 미세입자(PM2.5)의 호흡기질환 사망과의 연관성 연구)

  • Kang, Choong-Min;Park, Sung-Kyun;SunWoo, Young;Kang, Byung-Wook;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.554-563
    • /
    • 2006
  • Numerous epidemiological studies have shown stronger associations between $PM_{2.5}$ and both mortality and morbidity than $PM_{10}$. The association of $PM_{2.5}$ with respiratory mortality was examined in Seoul, during the period of $1996{\sim}2002$. Because $PM_{2.5}$ data were available for only 10% of this time period, a prediction regression model was developed to estimate $PM_{2.5}$ concentration. Death count due to respiratory-related diseases(total respiratory mortality; ICD-10, J00-J98) and death counts(cause-specific mortality) due to pneumonia(ICD-10, J12-J18), COPD(ICD-10, J40-J44) and asthma(ICD-10, J45-J46) were considered in this study. Averaged daily mortality was 5.6 for total respiratory mortality and 1.1 to 1.6 for cause-specific mortality. Generalized additive Poisson models controlling for confounders were used to evaluate the acute effects of particle exposures on total respiratory mortality and cause-specific mortality. An IQR increase in 5-day moving average of $PM_{2.5}(22.6{\mu}g/m^3)$ was associated with an 8.2%(95% CI: 4.5 to 12.1%) increase in total respiratory mortality The association of $PM_{2.5}$ was stronger for the elderly ($\geq$65 years old, 10.1%, 95% CI: 5.8 to 14.5%) and for males(8.9%, 95% CI: 2.1 to 11.3%). A $10{\mu}g/m^3$ increase in 5-day moving average of $PM_{2.5}$ was strongly associated with total respiratory mortality in winter(9.5%, 95% CI: 6.6 to 12.4%), followed by spring(3.1%, 95% CI: -1.2 to 7.5%), which was a different pattern with the finding in North American cities. However, our results are generally consistent with those observed in recent epidemiological studies, and suggest that $PM_{2.5}$ has a stronger effect on respiratory mortality in Seoul.

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향)

  • Park, Jin-Yong;Lee, Gwon-Seop
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

Long-term Trends of Visibility and Air Quality in Seoul, Ganghwa, Susan, Gwangju, Jeju (서울, 강화, 서산, 광주, 제주지역에서의 장기간 대기오염 및 시정 변화경향에 대한 연구 : 1990년 1월~2001년 7월)

  • Han, J.S.;Moon, Kwang-Joo;Kong, B.J.;Hong, Y.D.;Lee, S.J.;Shin, J.Y.
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.4
    • /
    • pp.197-211
    • /
    • 2004
  • Visibility impairment was known as an indicator of the increased air pollution. In many previous studies, it is known that both directly emitted fine particles mainly from vehicles and secondary aerosols from photochemical reactions could contribute to this visibility impairment in addition to the meteorological condition. Furthermore, the visibility showed different change patterns according to the geographical condition. In order to research into the influence of these factors on visibility, this study analyzed the visibility at 15:00, observed from 1990 to 2001 in Seoul, Ganghwa, Susan, Gwangju, Jeju. As a result, the visibility was increased in Seoul except the rainfall period, but in Susan, Gwangju, Jeju, it decreased with the relative humidity (RH). Especially, in Seoul, the number of low visibility days was larger than other sites and variations of the visibility were sensitive to the concentration of air pollutants, such as TSP, $NO_2$, $O_3$. The visibility impairment was mainly observed in meteorological condition of RH<50% and relatively stationary front. Therefore it is inferred that photochemical smog could lead to the low visibility in Seoul. On the other hands, in Ganghwa and Susan, when RH was 60~70%, the low visibility observed under the influence of the transports of air pollutants from nearby cities as well as humid air mass from coastal region. And in Jeju, sea fog and humid air mass caused the visibility impairment when the RH was larger than 80%. Finally, during the observational period, some cases of low visibility phenomena were simultaneously observed in the vast region including Seoul, Susan, Ganghwa. It not only includes the visibility aggravation by Asian Dust, but also could be caused by the movement and diffusion of flying dust or secondary aerosols. Moreover, the result shows that these phenomena could be mainly influenced by meteorological factors covering the wide regions.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.