• Title/Summary/Keyword: Fine particles(PM2.5)

Search Result 197, Processing Time 0.021 seconds

Seasonal Changes in the Absorption of Particulate Matter and the Fine Structure of Street Trees in the Southern Areas, Korea: With a Reference to Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis (한국 남부지역 가로수종 잎 미세구조와 미세먼지 흡착량의 계절 변화: 가시나무, 종가시나무, 참가시나무, 동백나무, 왕벚나무 중심으로)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Choi, Myung Suk;Sung, Chang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.129-140
    • /
    • 2021
  • The study investigates the correlation between the seasonal changes in the absorption of fine dusts and the fine structure of surface on each type of street tree, such as Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis in the southernareas of Korea. The absorption ranges of fine dust were 31.51~110.44 ㎍/cm2 in January, 23.20~79.30 ㎍/cm2 in November, 22.68~76.90 ㎍/cm2 in May, and 9.88~49.91 ㎍/cm2 in August. The absorption value was about 54.4% higher in January than in May. With the grooves and hairs on the leaf surface and lots of wax, Q. salicina seems related to the high absorption rate of fine dust for each fine dust particle size. The one with gloss and smooth leaf surface has a low amount of wax. C. japonica Prunus × yedoensisshowed a low absorption rate of fine dust in each season. Whereas the increase in porosity density, length, and leaf area size can be related to the reduced PM and increasedabsorption rate, the leaf surface roughness, total wax amount, and porosity width can be related to the increase in the PM absorption rate. There was also a high correlation between the total wax amount and absorption rate of the leaf surface at the size of PM0.2 than PM10 and PM2.5. These results imply that the quantitative and qualitative trais of leaf, such as wax amounts and leaf surface,can increase the absorption of fine dusts, and the small-sized particles seem to be highly adsorbed with the high wax amounts.

Quantitative Analysis of Organic Acids in $PM_{2.5}$ Fine Particles Collected at Kosan, Cheju Island (제주도 고산지역 $PM_{2.5}$ 미세입자 중의 유기산 함량 분석)

  • 고선영;강창희;김원형;신찬성
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.323-324
    • /
    • 2001
  • 입자크기가 2.5$\mu\textrm{m}$ 이하의 미세입자는 화석연료의 연소, 자동차 배출가스, 화학물질 제조과정 등과 같이 인위적 발생원에 의해 발생된 오염물질과 기체상 오염물질(SO$_2$, NOx, VOCs 등)이 입자상으로 전환된 2차 입자로 구성되어 있다. 이러한 미세입자는 황산염, 강산, 암모늄, 질산염, 유기화합물, 중금속 등을 포함하고 있고 호흡시 폐 내부까지 깊숙히 흡수되기 때문에 피해가 크고, 또 오염지역의 경우 시정장애를 일으켜 가시도에도 그 영향이 큰 것으로 알려져 있다. (중략)

  • PDF

On-road Investigation of PM Emissions of Diesel Aftertreatment Technologies (DPF, Urea-SCR) (차량 추적 실험을 통하여 디젤 후처리 장치가 입자상 물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.92-99
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the car chasing experiment of diesel bus equipped with aftertreatment system. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the diesel bus were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. The total PM number emission from diesel bus equipped with DPF was 10 orders of magnitude lower compared to those emitted from base diesel bus. And the total PM number emission from diesel bus equipped with SCR was comparable to the particle emission from base diesel bus.

Determination of Hydroxyapatite Precipitation Condition from the $Ca-PO_4-H_2O$ System ($Ca-PO_4-H_2O$계로부터 수산화아파타이트의 침전조건 결정)

  • Oh, Young-Jei
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-214
    • /
    • 2000
  • The formation and dissolution of hydroxides, carbonates and hydroxyapatite (HAp), which depend on the pH of solution, are important factor for the preparation of homogeneous and fine HAp, $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$, ceramic powder from the $Ca-PO_4-H_2O$ system. Since the solubility of each complex ion is a linear function of pH, the solubility diagram can be obtained by plotting the logarithmic molar concentrations calculated from the values of the equilibrium constants and solubility products for hydroxides, carbonates, and hydroxyapatite. The optimum pH condition for the formation of single phase $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$ powder in $Ca-PO_4-H_2O$ system at $25^{\circ}C$ was estimated as $10.5{\pm}0.5$ through the theoretical consideration. The HAp powder dried at $80^{\circ}C$ showed a fine agglomerated particles with a size of 75 nm. The HAp powder calcined at $1,000^{\circ}C$ consisted of nearly homogeneous particles with a size of 450 nm. Even though the dried HAp particles consisted of agglomeration, mechanical properties were superior due to fine microstructure after sintering.

  • PDF

Characterization of Coarse, Fine, and Ultrafine Particles Generated from the Interaction between the Tire and the Road Pavement (차량 주행 시 타이어와 도로의 경계면에서 발생하는 조대입자, 미세입자 및 초미세입자의 특성 연구)

  • Kwak, Jihyun;Lee, Sunyoup;Lee, Seokhwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.656-667
    • /
    • 2013
  • The non-exhaust coarse, fine, and ultrafine particles were characterized by on-road driving measurements using a mobile sampling system. The on-road driving measurements under constant speed driving revealed that mass concentrations of roadway particles (RWPs) were distributed mainly in a size range of 2~3 ${\mu}m$ and slightly increased with increasing vehicle speed. Under braking conditions, the mode diameters of the particles were generally similar with those obtained under constant speed conditions. However, the PM concentrations emitted during braking condition were significantly higher than those produced under normal driving conditions. Higher number concentrations of ultrafine particles smaller than 70 nm were observed during braking conditions, and the number concentration of particles sampled 90 mm above the pavement was 6 times higher than that obtained 40 mm above the pavement. Under cornering conditions, the number concentrations of RWPs sampled 40 mm above the pavement surface were higher than those sampled 90 mm above the pavement. This might be explained that a nucleation burst of a lot of vapor evaporated from the interaction between the tire and the road pavement under braking conditions continuously occurred by cooling during the transport to the sampling height 90 mm, while, for the case of cornering situations, the ultrafine particle formation was completed before the transport to the sampling height of 40 mm.

Comparison of Measurement Methods and Size Fraction of Fine Particles (PM10, PM2.5) from Stationary Emission Source Using Korean Standard and ISO: Coal Power Plant and Refinery (국내공정시험기준과 ISO 방법을 이용한 고정오염원 미세먼지 (PM10, PM2.5) 측정 방법 및 입경분율 비교: 석탄화력발전소, 석유정제시설 중심으로)

  • Youn, Jong-Sang;Han, Sehyun;Jung, Yong-Won;Jeon, Ki-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.342-350
    • /
    • 2017
  • We report mass concentration and size fraction of TPM, $PM_{10}$ and $PM_{2.5}$ according to Korea standard test method (ES 01301.1 and ES 01317.1) and ISO 23210 methods. Particulate matters were sampled in large stationary emission sources such as a coal power plant and B-C oil refinery. The Korea standard test method PM mass concentrations showed 3~3.5 times larger than the cascade impactor method. On the other hand, the size fraction results showed less than 5% difference (i.e. $PM_{2.5}/PM_{10}$) between two methods. Moreover, the correlation coefficient ($r^2$) is 0.84 between TPM results of the Korea standard test method and CleanSYS. These results suggested not only improvement of current test criteria in terms of technical and theoretical aspects. Further, additional measurements are required in various large stationary sources to compare current field data.

A Study on Heavy Metal Levels of PM 2.5 and Source Identification in Roadside Area (도로변 미세분진중 중금속의 농도특성과 오염원확인에 관한 연구)

  • 임종명;이현석;장미숙;이진홍;문종화;정용삼
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.53-54
    • /
    • 2002
  • 도시대기중의 분진은 입경 분포에 따라 공기 역학적 직경 2.5$\mu\textrm{m}$를 기준으로 미세 입자(fine particles)와 거대 입자(coarse particles)로 나누어지는 쌍극분포를 보인다. 미세 입자는 주로 화석연료의 연소, 자동차의 배기가스 등과 같은 인위적 발생원에 의한 것이며, 거대입자는 토사의 재 비산, 해염 통과 같은 자연적 발생원에 의한 것이다. 미세 입자는 오염된 도심지역 분진수의 90-99%에 이르는 높은 비율을 보이고 있고, 폐 깊숙히 침투하여 폐 질환을 일으킬 수 있다. (중략)

  • PDF

A Study on the Concentration of Fine Particles and Heavy Metals in Iron Works (제철소 주변지역의 대기 중 미세먼지 및 중금속 농도에 관한 연구)

  • Cho, Tae-Jin;Jeong, Man-Ho;Jeon, Jun-Min;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.401-409
    • /
    • 2009
  • The results of particulate matters level and heavy metal concentration, which surveyed in Gwang-Yang, Dang-Jin steel industry area, are as follows; The $PM_{2.5}$, $PM_{10}$ of exposure area are $22.3{\mu}g/m^3$, $40.4{\mu}g/m^3$ each in Kum-Ho dong, and $28.1{\mu}g/m^3$, 51.5 each in Jung dong. The $PM_{2.5}$, $PM_{10}$ of control area are $16.4{\mu}g/m^3$, $29.5{\mu}g/m^3$ each in Bonggang-myeon. The level is higher in exposure area than control area. In case of Dang Jin, the concentration of $PM_{10}$ and $PM_{2.5}$ is higher in exposure area than control area ($PM_{2.5}-20.4{\mu}g/m^3$, $PM_{10}-39.2{\mu}g/m^3$). The Pb level of Dang Jin area is higher in exposure area ($0.13{\mu}g/m^3$) than control area ($0.1{\mu}g/m^3$) and both Gwang-Yang and Dang-Jin area lower level than the Guideline level of Korea EPA.

A Study of Concentration Characteristics of Acidic Air Pollutants During the Summer and Winter Seasons in Seoul (서울지역 여름철과 겨울철 산성 오염물질의 농도 특성에 대한 연구)

  • 이학성;강충민;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • Winter and summer samples were collected from January 3 to February 7, 1997 and July 26 to September 11, 1997, respectively, in Seoul. This study was to characterize the concentrations of the annular denuder system (ADS) were $HNO_3$, $HNO_2$, $SO_2$ and $NH_3$ in the gas phase, and $PM_{2.5}$ ($d_p$〈2.5$mu extrm{m}$), $SO_4^{2-}$, NO3-, and $NH_4^+$ in the particulate phase. All chemical species monitored from this study showed statistical seasonal variations except for $SO_4^{2-}$ . Nitric acid (HNO3) and ammonia ($NH_3$) exhibited substantially higher concentrations during the summer, while nitrous acid ($HNO_2$) and sulfur dioxide ($SO_2$) concentrations were higher during the winter. $PM_{2.5}$, $NO_3^-$, and $NH_4^+$ were higher leves in the winter. High correlations were found among $PM_{2.5}$, $NO_3^-$ $SO_4^{2-}$ and $NH_4^+$ during two seasons.

  • PDF

An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze (광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석)

  • Kim, Hak-Sung;Chung, Yong-Seung;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.434-447
    • /
    • 2016
  • This study analyzed mass concentrations of PM10 and PM2.5, as measured at Tae-ahn and Gang-nae, Cheongju in central Korea over the period from 2011 to 2015. Higher mass concentrations of PM10, with the exception of dustfall cases during the period of winter and spring, reflected the influence of a prevailing westerly airflow, while the level of PM10 stayed at a low level in summer, reflecting the influence of North Pacific air mass and frequent rainfall. Accordingly, cases where a daily PM10 average of $81{\mu}gm^{-3}$ or over (exceeding the status of fine dust particles being 'a little bit bad') were often observed during the period of winter and spring, with more cases occurring in parts of Tae-ahn that are located close to the sources of pollutant emission in eastern China. Dustfall usually originated from dust storms made up of particles $2.5{\mu}m$ or over in diameter. However, anthropogenic haze displayed a high composition ratio of particulate less than $2.5{\mu}m$ in diameter. Accordingly, brightness temperature difference (BTD) values from the Communication, Ocean and Meteorological Satellite (COMS) were $-0.5^{\circ}K$ or over in haze with fine particulate. PM10 mass concentrations and NOAA 19 satellite BTD for haze cases were analyzed. Though PM10 mass concentrations were found to be lower than $200{\mu}g\;m^{-3}$, the mass concentration ratio of PM2.5/PM10 was measured as higher than 0.4 and BTD was found to be distributed in the range from -0.3 to $0.5^{\circ}K$. However, the BTD of dustfall cases exceeding $190{\mu}g\;m^{-3}$, were found to be less than 0.4 and BTD was found to be distributed in the range less than $-0.7^{\circ}K$. The result of applying BTD threshold values of the large-scale transport of haze proved to fall into line with the range over which aerosols of MODIS AOD and OMI AI were distributed.