• 제목/요약/키워드: Fine aggregates

검색결과 422건 처리시간 0.023초

Strength Characteristics of Unsaturated Polyester Resin Mortar using Recycled Fine Aggregates

  • Kim, Wha-Jung;Choi, Young-Jun;Jun, Joo-Ho;Kim, Yong-Bae
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.89-97
    • /
    • 1999
  • The purpose of this research is to investigate the utilization of recycled fine aggregates as a material to apply to a building finished walls or as a decorating material in combination with a polymer. The strengths of two resin mortars using recycled fine aggregates and natural fine aggregates was made. In order to improve the workability and the strength of the resin mortar with recycled fine aggregates, partial replacement of recycled fine aggregates with natural ones was made with the application of various type of fillers. The results, it show that the compressive strength and flexural strength of resin mortar using the recycled fine aggregates were about 70% to 100% of those of resin mortar using natural fine aggregates. It was enough to assure the utilization of the recycled fine aggregates as a material for the production of resin mortar. From the result of partial replacement of recycled fine aggregates with natural ones, the compressive strength was Increased from 5% to 15% and the flexural strength was much as 5% to 20% as a result of 70% substitution It was also found that the use of garnet powder shows a similar tendency in the compressive strength and slag powder does in the flexural strength and tensile strength.

  • PDF

성분 및 입도분포가 다른 잔골재의 혼합에 의한 콘크리트의 품질향상 (Quality Improvement of Concrete Depending on the Mixing of Fine Aggregates Different Compositions and Grain Sizes)

  • 김영희;박민용;김정빈;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.77-79
    • /
    • 2012
  • This study is to assess the differences between concrete having only one of fine aggregates such as crushed fine aggregates, sea sand and blast furnace slag in it and concrete having mixture of two kinds of those fine aggregates in it in order to find out how to deal with the lack of some aggregates. The findings are as follows. In terms of slump, the concrete containing sea sand and blast furnace slag has very low slump values while the concrete having the mixture of crushed fine aggregate and the other fine aggregates showed better workability. In terms of compressive strength, the concrete containing the mixture of two kinds of aggregates showed higher compressive strength. Accordingly, it is likely that the concrete containing the mixture of crushed fine aggregate, sea sand and blast furnace slag is better than the concrete with only one kind of fine aggregates in terms of the usability.

  • PDF

잔골재 혼합사용이 석회암 굵은 골재 사용 초고강도 콘크리트의 유동특성에 미치는 영향 (Effect of Mixed Use of Fine Aggregates on the Flowability of Ultra High Strength Concrete)

  • 이홍규;김민영;이순재;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2015
  • As this study is one related to ultra high strength concrete using crushed coarse limestone aggregates among the series of experiments for improving the economic inefficiency of the ultra high strength concretes used for high rise structures, it has analyzed the flowability of ultra high strength concrete according to the variation of blended fine aggregates. As a result of analyzing the characteristics of fresh concrete, it is determined that the application of ultra high strength concrete would be difficult in case of a mix using blended fine aggregates as lower flowability than the mix using limestone crushed fine aggregate only was shown in all mixes using blended fine aggregates.

  • PDF

The Properties of Mortar Mixtures Blended with Natural, Crushed, and Recycled Fine Aggregates for Building Construction Materials

  • Yu, Myoung-Youl;Lee, Jae-Yong;Chung, Chul-Woo
    • 한국건축시공학회지
    • /
    • 제12권1호
    • /
    • pp.73-86
    • /
    • 2012
  • In this research, the possible applicability of mixture blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to be an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.

窯業廢棄物을 콘크리트용 骨材로 再活用하기 위한 硏究 (A Research on the Recycling of Ceramic Wastes as an Aggregate for Concrete)

  • 문한영;김기형;신화철
    • 자원리싸이클링
    • /
    • 제10권2호
    • /
    • pp.41-49
    • /
    • 2001
  • 본 논문은 여주, 이천 등지의 도자기 공장지대에서 다량으로 발생되는 폐도자기를 파쇄하여 콘크리트용 골재로 사용 가능한지에 대해 알아보기 위하여 실험을 실시한 결과를 정리한 내용이다. 실험방법으로써는 요업폐기물을 파쇄하여 크기에 따라 콘크리트용 잔골재와 굵은골재로 분류한 후 대체율을 달리하여 모르터 및 콘크리트를 제조하여 유동성 및 재령별 압축강도 등 콘크리트의 기초적 성질에 대하여 고찰하였다 실험결과, 요업폐기물을 잔골재로 사용한 모르터의 경우, 강모래만을 사용한 모르터보다 대체율에 관계없이 플로우 값 및 압축강도가 향상됨을 알 수 있었다 한편 콘크리트용으로 요업폐기물 잔골재로 대체한 콘크리트의 경우 슬림프 값이 저하하는 문제점이 나타났으나, 압축강도의 경우 요업폐기물을 잔골재로 사용한 콘크리트는 초기재령에서는 낮게 나타났으나 장기재령에서는 요업폐기물 골재를 사용하지 않은 경우와 거의 유사하거나 오히려 상회하는 좋은 결과를 얻을 수 있었다

  • PDF

재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구 (Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates)

  • 이재승;나옥빈
    • 자원리싸이클링
    • /
    • 제24권5호
    • /
    • pp.63-71
    • /
    • 2015
  • 본 연구는 재생 굵은골재와 산업부산물인 급냉 제강슬래그 잔골재를 이용한 친환경 재생 콘크리트의 재료적 특성을 파악하고 적정 혼합비를 도출하는데 그 목적이 있다. 이를 위해서 재생 굵은골재의 치환율은 30%에서 50%까지 증가시켰으며, 급냉 제강슬래그 잔골재는 10%에서 50%까지 증가시켜서 물성실험을 수행하였다. 그 결과, 재생골재의 치환율이 증가함에 따라 강도가 감소하였으나 급냉 제강슬래그 잔골재의 혼입율을 증가함에 따라 강도가 증가됨을 알 수 있었다. 더불어 급냉 제강슬래그 잔골재의 적정 치환율은 압축강도 및 탄성계수 등을 고려했을때 20~30%로 판단되며, 재생 굵은골재의 치환율 증가에도 도움이 될 것으로 사료된다.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

Experimental investigations on performance of concrete incorporating Precious Slag Balls (PS Balls) as fine aggregates

  • Sharath, S.;Gayana, B.C.;Reddy, Krishna R.;Chandar, K. Ram
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.239-246
    • /
    • 2019
  • Substitution of natural fine aggregates with industrial by-products like precious slag balls (PS Balls) offers various advantages like technical, economic and environmental which are very important in the present era of sustainability in construction industry. PS balls are manufactured by subjecting steel slag to slag atomizing Technology (SAT) which imparts them the desirable characteristics of fine aggregates. The main objective of this research paper is to assess the feasibility of producing good quality concrete by using PS balls, to identify the potential benefits by their incorporation and to provide solution for increasing their utilization in concrete applications. The study investigates the effect of PS balls as partial replacement of fine aggregates in various percentages (20%, 40%, 60%, 80% and 100%) on mechanical properties of concrete such as compressive strength, splitting tensile strength, and flexural strength. The optimum mix was found to be at 40% replacement of PS balls with maximum strength of 62.89 MPa at 28 days curing. Permeability of concrete was performed and it resulted in a more durable concrete with replacement of PS balls at 40% and 100% as fine aggregates. These two specific values were considered as optimum replacement is 40% and also the maximum possible replacement is 100%. Scanning electron microscope (SEM) analysis was done and it was found that the PS balls in concrete were unaffected and with optimum percentage of PS balls as fine aggregates in concrete resulted in good strength and less cracks. Hence, it is possible to produce good workable concrete with low water to cement ratio and higher strength concrete by incorporating PS balls.

순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구 (An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate)

  • 류재석;송일현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.193-203
    • /
    • 2011
  • 본 연구에서는 폐콘크리트에서 발생하는 순환잔골재가 구조용 재료로서 많은 문제점이 있음을 인지하고 순환잔골재가 포함하고 있는 미분말이 강도증진 효과와 유동성을 증가 시킬 수 있다는 특성을 이용하여 자기충전 콘크리트(Self-Compacting Concrete, 이하 SCC로 표기)에 활용하게 되었다. 즉 순환잔골재가 갖는 미분말이 자기충전 콘크리트 특성인 고강도(40 MPa 이상)와 높은 유동성(JSCE 2등급)을 발현하기에 적당하여 폐콘크리트에서 발생하는 순환잔골재를 일반잔골재 대비 순환잔골재의 혼입률을 25%씩 증가시켜, 총 5수준으로 달리하여 자기충전 콘크리트에 적용하였으며, 이에 따라 굳지 않은 콘크리트의 물리적 특성, 경화한 콘크리트의 역학적 및 내구 특성을 검토하여 순환잔골재를 자기충전 콘크리트 재료로서 활용 가능성을 검토하고자 한다. 그 결과 물리적, 역학적 및 내구특성의 5수준 배합비율 중 일반잔골재 대비 순환잔골재는 50% 혼입률까지 적용가능하다는 결론을 얻었으며, 그 이상의 혼입률에서는 오히려 성능저하가 발생한다는 것을 알 수 있었다. 또한 실생활에서의 적용 가능성을 알아보기 위한 실구조물의 적용성이 차후 검토 되어야 할 것으로 판단된다.

해사의 기본성질과 잔골재로서의 이용 방안에 관한 연구 (A Study on the Characteristics of Beach Sand as Fine aggregate of Concrete)

  • 황경구;전현우
    • 한국농공학회지
    • /
    • 제18권4호
    • /
    • pp.4265-4273
    • /
    • 1976
  • 1. Fine aggregates of concrete are very important for the construction works and construction cost determination. Most of fine aggregates are from the river sand, but the amount of storage in the river side is steadily decreasing due to continuous construction works. Therefore, another source of fine aggregates is needed to meet increasied demand of sand. 2. Beach sand is a possible source of fine aggregates. But rust of steel bar is caused by CL-chemical of beach sand. Therefore, desalinization of beach sand is requested to get durable reinforced concrete. Economical methods of desalinization are as follows. (a) Flooding and drainage method. (b) Washing of beach sand with water supply and mixing. (c) Spreading of beach sand on the land and leaching by rain water for a few month. 3. Hardening of concrete with beach sand is accelerated due to salt, Thus early stage strength increase leads to make cracks. Also later stage strength decreases and durability becomes worse. By using appropriate admixture, the quality of concrete can be improved.

  • PDF