The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.
Given the further promotion of economic globalization, China's financial market has also expanded. However, at present, this market faces substantial risks. The main financial and economic risks in China are in the areas of policy, credit, exchange rates, accounting, and interest rates. The current status of China's financial market is as follows: insufficient attention from upper management; insufficient innovation in the development of the financial economy; and lack of a sound financial and economic risk protection system. To further understand the current situation of China's financial market, we conducted a questionnaire survey on the financial market and reached the following conclusions. A comprehensive enterprise questionnaire from the government's perspective, the enterprise's perspective and the individual's perspective showed that the following problems exist in the financial and economic risk prevention aspects of big data and Internet of Things in China. The political system at the country's grassroots level is not comprehensive enough. The legal regulatory system is not comprehensive enough, leading to serious incidents of loan fraud. The top management of enterprises does not pay enough attention to financial risk prevention. Therefore, we constructed a financial and economic risk prevention model based on big data and Internet of Things that has effective preventive capabilities for both enterprises and individuals. The concept reflected in the model is to obtain data through Internet of Things, use big data for screening, and then pass these data to the big data analysis system at the grassroots level for analysis. The data initially screened as big data are analyzed in depth, and we obtain the original data that can be used to make decisions. Finally, we put forward the corresponding opinions, and their main contents represent the following points: the key is to build a sound national financial and economic risk prevention and assessment system, the guarantee is to strengthen the supervision of national financial risks, and the purpose is to promote the marketization of financial interest rates.
전자금융사기의 고도화와 함께 지능적인 수법들이 동원됨에 따라 전자금융 사용자들의 피해사례가 늘어나고 있다. 이에 대한 대응 방안으로 금융당국은 사용자 구간에 집중된 기존 보안 대책 외에 이의 한계성을 극복하기 위한 이상거래 탐지 시스템의 도입을 확대 권고하고 있다. 이상거래 탐지 시스템은 실시간으로 고객의 거래를 확인하고 이상거래 유무를 판별하여 전자금융 사고를 방지할 수 있도록 하는 시스템으로 거래 정보를 빠르게 분석하여 이상거래를 식별하는 것이 핵심이다. 본 논문에서는 사고 데이터분석을 통해 이상 징후 패턴을 파악하고 탐지 룰을 설정하고, 이렇게 설정된 룰을 기반으로 고객 개인별 거래 패턴과 고객 프로파일을 비교하여 이상거래 여부를 판단하고자 한다. 이때 의사결정나무를 사용하여 탐지 룰을 정규화 하여 효과적으로 이상거래를 탐지 할 수 있도록 하는 방법을 제안하고자 한다. 실증 분석을 위해 국내 모 은행의 전자금융 사고 데이터를 바탕으로 패턴 정보와 고객 프로파일 정보를 도출하였고 이를 통하여 탐지 룰을 설정하였다. 그리고 탐지된 룰을 의사결정나무를 사용하여 정규화 한 결과를 순차적인 탐지 방식과 비교하여 제시된 방안이 효과적임을 확인하였다.
2009년 이후 전체 범죄는 감소하고 있지만, 보이스피싱은 오히려 급증하고 있다. 정부와 학계에서는 이를 근절하기 위해 다양한 대책을 제시하고 연구를 진행해 왔으나 진화하는 보이스피싱을 따라잡기에는 역부족이다. 이 연구에서 연구자들은 범인 검거와 피해회복이 어려운 보이스피싱의 피해 예방에 초점을 두었다. 특히, 피해자가 금융거래행위(계좌이체 등)를 한다는 점이 금융사기(이상거래)와 유사하다는 점에 착안하여, 금융사기 탐지에 활용되고 있는 이상거래탐지시스템(FDS)을 활용한 보이스피싱 예측 방안을 연구하였다. 그 결과 머신러닝 기반의 이상거래탐지시스템(FDS)에 보이스피싱과 관련한 통화내역, 메신저내역, 대포통장, 보이스피싱 유형과 112신고 등 빅데이터를 결합한 방안을 개념적으로 도출하였다. 이 연구에서는 주로 정부 대책과 빅데이터 활용과 관련한 문헌연구를 중심으로 연구를 진행했다. 그러나 데이터 수집의 한계와 FDS의 보안 문제로 구체적인 모델까지를 제시하지는 못하였다. 다만, 관련된 선행연구가 없는 현실에서 머신러닝을 위해 필요한 데이터 종류와 FDS를 융합한 보이스피싱 대응방안의 개념을 최초로 제시했다는 점에 의미가 있다. 향후 이 연구를 바탕으로 '보이스피싱 피해 예측 시스템'이 개발되어 보이스피싱 피해가 근절되기를 기대한다.
본 연구는 필자가 2017년 4월에 실제로 당했던 파밍과 보이스피싱이 결합된 사이버 금융사기에 대한 체험적 사례연구이다. 범죄나 재난을 연구하는데 있어서 실제 피해를 입은 피해자를 대상으로 한 연구는 범죄예방대책을 수립하는 데 매우 도움이 되는 분야이다. 한국은 상대적으로 이런 연구가 매우 빈약하다는 점에서 본 연구의 의의가 있다. 필자는 8년을 키워 가족이 된 반려견이 방광염으로 매우 위험한 상황에 처했을 때, 정신적 혼란으로 합리적 판단력을 상실하는 상태에 빠진 결과 사이버사기를 당했다. 다행히도 빠른 신고로 피해액을 모두 돌려받았으나 그 기간이 8개월이나 되었다. 피해액을 모두 돌려받는데 너무 오랜 시간이 걸린 결과 또 다른 고통을 받을 수밖에 없었다. 필자의 경험에 비추어 피해예방대책을 제안한다. 첫째, 일정한 조건과 일정한 금액이 이체될 경우 자동적으로 거래가 중지되거나 더 엄격한 확인절차를 추가한다. 둘째, 피해자에게는 피해가 없고 범인을 체포할 수 있도록 하는 함정거래 수단을 강구한다. 셋째, 범죄 피해자에게 피해액의 조속한 상환을 하거나 생활자금을 무이자나 저리로 대출해주는 제도를 도입해야 한다.
ISA, Mohd Yaziz Bin Mohd;IBRAHIM, Wan Nora Binti Wan;MOHAMED, Zulkifflee
산경연구논집
/
제12권12호
/
pp.1-10
/
2021
Purpose: Cyber criminals have affected various markets and the banking system has encountered various kinds of cyberattacks. The purpose of this study is to analyze cybercrime that is an emerging threat and investigate the significant contribution of financial literacy and public awareness on cybercrimes. To understand the security issues and the need for corrective steps, the techniques and strategies used by cyber fraudsters in obtaining unauthorized access and use the financial information for purpose of fraud need to be understood. Research design, data and methodology: A sample of 123 banks employees from 12 commercial banks in Malaysia was surveyed. This study differs from previous studies as it surveyed the employees' awareness, and this approach fills in the gap in existing literature. Results: The financial literacy and public awareness have positive impact on organizational performance effectiveness to combat threat of cybercrime. Some recommendations are also proposed from research findings, for banking industry and government regulations. Conclusion: The present study focuses on banking sector so its findings cannot be generalized to other sectors. Linking these topics has created a new study in combating threat of cybercrimes generally, and specifically in Malaysia. The present study enhances the understanding of customers' role to combat the impact of cybercrimes on performances of banking industry.
·전자상거래: 서로 보지 않고 하는 거래 온라인 범죄(Online Fraud)급증 90% of information security managers have detected breaches at their organizations within a year 74% of companies have experienced financial losses because of cybercrime price tag on e-security breaches:>$17 billion worldwide in 2000(source: CIO Magazine, March 2001) ·전자상거래 최대의 걸림돌: 신뢰 62% cited trust as the top E-commerce barrier -Authentication was key to 60%: Privacy was key to 56% ·(1999 ITAA and E&Y Survey) 인터넷을 신뢰의 공간(Trust Network)으로 만들자. (OECD의 Global Theme. 1998.10) 전자상거래 신뢰 확보→인증기관 출현(중략)
기존의 전자금융 이상거래 분석 및 탐지기술은 전자금융 업무시스템으로부터 발생된 대량의 전자금융 거래로그를 빅데이터 기반의 저장 공간으로 수집하고, 기존 고객의 거래패턴 프로 파일링 및 다양한 사고거래를 분석한 탐지룰을 이용하여 비정상적인 이상거래를 실시간 또는 준 실시간으로 탐지하고 있다. 하지만, 정작 피해금액 규모 및 사회적 파급효과가 큰 금융회사 내부자의 전자금융 부정접속 시도 및 내부 통제환경의 우회를 통한 전자금융 이용자의 중요정보 탈취와 같은 적극적인 분석은 제대로 이루어지지 못하고 있다. 이에 본 논문에서는 금융회사의 전자금융 보안프로그램에 대한 관리 실태를 분석하고, 관리상 취약점을 악용한 내부자의 보안통제 우회사고 가능성 도출한다. 또한, 이를 효율적으로 대응하기 위하여 기존 전자금융 이상거래탐지시스템에 더불어 내부자 위협모니터링과 연계한 포괄적인 전자금융 보안관리 환경을 제시하고자 한다.
Credit evaluation is one of the most important and difficult tasks fur credit card companies, mortgage companies, banks and other financial institutes. Incorrect credit judgement causes huge financial losses. This work describes the use of an evolutionary-fuzzy system capable of classifying suspicious and non-suspicious credit card transactions. The paper starts with the details of the system used in this work. A series of experiments are described, showing that the complete system is capable of attaining good accuracy and intelligibility levels for real data.
인터넷(ICT)과 은행(금융)이 융합하여 형성된 인터넷전문은행은 핀테크의 결정체라고 불리며 최근 급속한 성장속도를 보이고 있다. 현재 한국의 대표적인 인터넷전문은행으로는 'K뱅크'와 '카카오뱅크'가 있으며, 출범과 동시에 'IT 금융 혁신의 시작'이라는 반응을 얻고 있다. 인터넷전문은행의 편리한 금융서비스를 이용하며 시간적 금융적인 장점을 극대화하는 사용자도 있지만, 신규은행인 단점으로 거래계좌를 검색해도 사기 등의 잘못 악용된 전적을 찾을 수 없기 때문에 중고물품 거래를 악용한 단 한 명의 사기판매자로 인한 피해금액만도 2,000만원을 상회하는 경우도 있다. 본 논문에서는 인터넷전문은행의 최신 동향을 분석하고 피해/긍정사례들을 제시, 분석하며 인터넷전문은행의 피해 예방 방법과 발전전략을 연구, 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.