본 연구에서는 2000년부터 2002년까지의 기간에서 국내 외의 재무분석가들이 1999년$\sim$2003년까지의 각 연도별 연간 매출액, 영업이익과 순이익에 대하여 발표한 예측치를 대상으로 하여 재무분석가들이 기업실적을 얼마나 정확하게 예측하며, 예측치를 수정할 때 어떤 체계적인 경향을 보이며, 기업실적을 예측할 때 전년도의 실적변화에 대해 어떤 반응을 보이는지를 분석하는데 목적을 두었다. 이러한 분석목적을 달성하기 위하여 재무분석가별, 예측년도별, 전년도의 기업실적 변화별로 표본을 각각 분류하여 재무분석가별 예측의 정확성, 합의예측치의 상대적 정확성, 예측치의 수정패턴 및 예상 밖의 전년도 실적변화에 대한 반응을 분석하였다. 본 연구에서 발견된 분석결과를 요약하면 다음과 같다. 첫째, 매출액, 영업이익과 순이익의 표준예측오차가 모두 통계적으로 유의적인 음(-)의 값을 보임으로써 재무분석가들이 기업실적을 상향 편의적으로 예측하는 경향이 있음을 발견하였다. 둘째, 국내. 외 재무분석가의 예측정확성을 비교한 분석에서 국내 재무분석가들이 국외 재무분석가들에 비해 상대적으로 정확한 예측을 하고 있음을 발견하였다. 셋째, 예측시점별로 측정한 평균표준예측오차에 대한 분석에서는 예측시점이 기업실적의 발표시점에 가까워질수록 예측의 정확성이 높아짐을 발견하였다. 넷째, 개별재무분석가와 비교할 때, 합의예측치의 정확성이 상대적으로 떨어지는 것으로 나타났으며, 합의 예측치를 추정할 때 평균보다 중위값을 이용하여 추정한 경우 예측오차를 줄일 수 있는 것으로 나타났다. 다섯째, 재무분석가들이 기업실적을 과대 예측한 다음 예측치를 하향 수정하는 것으로 나타났으나 체계적이지 않음을 발견할 수 있었다. 즉 재무분석가들은 전년도의 기업실적에 따라 예측치를 상향 또는 하향 수정하는 것으로 나타났다. 여섯째, 재무분석가들은 예측활동을 수행하는 과정에서 전년도의 매출액 변화에 대하여 과대 반응하는 한편 전년도의 영업이익과 순이익 변화에 대하여 과소 반응함을 발견할 수 있었다. 일곱째, 재무분석가들의 예측편의를 보다 정확하게 분석하기 위하여 정보변수인 전년기업실적 변수를 예상된 실적변화와 예상치 못한 실적변화로 분류하여 Easterwood-Nutt(1999)모형을 이용해 분석한 결과 세 개의 기업실적변수(매출액, 영업이익과 순이익)모두의 예상치 못한 전년실적변화에 대해 재무분석가들이 과대 예측하는 것이 아니라 낙관적 예측을 수행하는 경향이 있음을 발견할 수 있었다.
The Journal of Asian Finance, Economics and Business
/
제7권10호
/
pp.9-21
/
2020
The aim of this paper is to predict the Borsa Istanbul (BIST) 30 index movements to determine the most accurate buy and sell decisions using the methods of Artificial Neural Networks (ANN) and Genetic Algorithm (GA). We combined these two methods to obtain a hybrid intelligence method, which we apply. In the financial markets, over 100 technical indicators can be used. However, several of them are preferred by analysts. In this study, we employed nine of these technical indicators. They are moving average convergence divergence (MACD), relative strength index (RSI), commodity channel index (CCI), momentum, directional movement index (DMI), stochastic oscillator, on-balance volume (OBV), average directional movement index (ADX), and simple moving averages (3-day moving average, 5-day moving average, 10-day moving average, 14-day moving average, 20-day moving average, 22-day moving average, 50-day moving average, 100-day moving average, 200-day moving average). In this regard, we combined these two techniques and obtained a hybrid intelligence method. By applying this hybrid model to each of these indicators, we forecast the movements of the Borsa Istanbul (BIST) 30 index. The experimental result indicates that our best proposed hybrid model has a successful forecast rate of 75%, which is higher than the single ANN or GA forecasting models.
본 연구는 유가증권 및 코스닥상장기업을 대상으로 기업의 비정상 투자가 재무분석가의 이익예측과 어떠한 관계가 있는지 실증적으로 분석하였다. 본 연구의 분석기간은 관심변수를 기준으로 2003년부터 2015년까지(종속변수는 2004년부터 2016년까지)이며 재무분석가가 주당이익예측치를 발표한 기업 중 연구조건을 만족하는 최종표본 4,917개 기업/년 자료를 분석대상으로 선정하여 연구를 진행하였다. 실증분석결과는 다음과 같다. 첫째, 비정상 총투자, 비정상 R&D, 비정상 CAPEX 투자가 많을수록 재무분석가의 이익예측정확성은 유의하게 향상되었다. 둘째, 비정상 총투자, 비정상 R&D, 비정상 CAPEX 투자가 많을수록 재무분석가의 이익예측은 비관적인 성향을 갖는 것으로 나타났다. 추가분석을 통해 이러한 결과는 과소투자 집단보다는 주로 과잉투자 집단에 의해 발생되는 결과임이 입증되었다. 본 연구결과는 재무분석가의 이익예측 결정요인으로 비정상투자가 고려된다는 점에서 기존 연구에 추가적인 공헌점이 있을 것으로 기대된다.
본 연구는 수익비용대응이 정보비대칭을 감소시키는지 먼저 살펴보고 이익지속성과 정보비대칭에 미치는 영향을 검증한다. 경영자와 정보이용자간에 정보비대칭이 존재하는 상황에서 경영자는 이익의 질을 높임으로써 정보비대칭을 감소시킬 수 있다. 정보비대칭은 재무분석가의 이익예측분산으로 측정한다. 선행연구의 결과를 살펴볼 때, 수익비용대응이 높을수록 정보비대칭이 감소하는지를 살펴보고, 수익비용대응이 높은 경우 이익지속성과 정보비대칭간에 음(-)의 관련성이 나타나는지를 검증한다. 연구결과, 수익비용대응이 높은 기업들은 정보비대칭이 감소하는 결과를 보였다. 높은 수익비용대응이 수행된 이익의 지속성은 재무분석가의 이익예측분산을 감소시키는 것으로 나타났다. 이는 수익비용대응이 잘 이루어질수록 이익의 질이 개선되고 기업의 불확실성에 대한 정보위험이 감소되는 것을 의미한다. 본 연구는 높은 수익비용대응이 수행된 이익의 지속성이 정보비대칭을 감소시키는지를 분석했다는 점에서 선행연구와 차별성을 가진다. 경영자가 적절한 수익비용대응을 수행하여 정보비대칭을 감소시킨다는 본 연구의 결과는 회계이익정보를 활용하는 이해관계자들에게 추가적인 시사점을 제공할 것이다.
Purpose: This paper investigated the relationship between market competition and firm valuation error. Furthermore, Additional analyses were made according to the quality of financial reports and the listed market. Through the process we confirm to the impact of competition on the capital market. The purpose of this study is to analyze the impact of competition on valuation errors. The preceding studies did not provide a consistent results of the effects of competing functions on the capital market. One view is that the competition could mitigate the information asymmetry, and the other is that monopolistic lessens the manager's involvement in financial reporting. This study is intended to expand the prior study by analyzing the impact of competition on the capital market and on the valuation of investors. Research design, data, and methodology: The analysis was conducted on 12,031 samples over 11 years from 2008 to 2018 using data from market in Korea. Here the valuation error was measured by the research methodology of Rhodes-Kropf, Robinson and Viswanathan (2005), and competition measured by Herfindahl-Hirschman Index multiplied by (-1), and Concentration Ratio by (-1). Results: We confirm that the positive relationship between competition and the valuation error. In addition, we also found that the positive relation between competition and valuation error was in cases of low discretionary accruals and the KOSDAQ market. This means that the net function of competition does not mitigate valuation errors. Conclusions. This study has the following contributions when compared to prior research. First, the relevance between the level of competition and the valuation of the entity was confirmed. The study by Haw, Hu and Lee (2015) suggested that monopolistic industry of analysts' forecast is more accurate due to lower the variability in earnings. This study magnified it to confirm that monopolistic lessen information uncertainty in valuation. Second, the study on valuation errors was expanded. While the study on the effect of valuation errors on the capital market is generally relatively active, it is different that competition degree has analyzed the effect on valuation errors amid the lack of research on the effect on valuation errors.
최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.