• 제목/요약/키워드: Fin-tube Heat Exchanger

검색결과 268건 처리시간 0.028초

냉동공조용 관군에서의 서리발생 및 제상 메커니즘에 관한 연구 (Study on frost Generation and Defrosting Mechanism on Evaporating Tubes for Refrigerator and Air condition industries)

  • 지재훈;김창복;문성배;오철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.234-235
    • /
    • 2005
  • In this experiment study, to acquire elementary data for explaining to generate frost layer in the fin - tube evaporator. the experiment condition is to supply air on 0.3m/s, 0.6m/s, 0.9m/s and inlet air temperature is 15$^{circ}C$, 20$^{circ}C$, 25$^{circ}C$ , supplied air relative humidity is 70%, 80, 90%. And brine temperature in the copper tube was kept -15$^{circ}C$ because, generally cooling temperature range is constantly -15$^{circ}C$ in the heat exchanger for air conditioning system. in conclusion, through this experiment, we did compare with frost layer and frost thickness in each condition and examine these data

  • PDF

냉동공조용 증발기에서 서리의 발생 및 제상 메커니즘에 관한 연구 (A study on frost generation and difrosting mechanism on evaporating tubes for Air-conditioning system)

  • 지재훈;김창복;김명환;오철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.166-171
    • /
    • 2005
  • In this experiment study, to acquire elementary data for explaining to generate frost layer in the fin - tube evaporator. the experiment condition is to supply air on 0.3m/s, 0.6m/s, 0.9m/s and inlet air temperature is kept constantly $20^{\circ}C$, supplied air relative humidity is 70%, 80, 90%. And brine temperature in the copper tube was kept $-15^{\circ}C$ because, generally cooling temperature range is constantly $-15^{\circ}C$ in the heat exchanger for air conditioning system. in conclusion, through this experiment, we did compare with frost layer and frost quantity in each condition and examine these data

  • PDF

응축기의 설계조건에서 R22와 R134a의 압력강하 예측 및 실험 (Prediction and Experiment of Pressure Drop of R22 and R134a on Design Conditions of Condenser)

  • 강신형;변주석;김창덕
    • 에너지공학
    • /
    • 제15권4호
    • /
    • pp.243-249
    • /
    • 2006
  • 본 실험적 연구는 슬릿휜-관열교환기의 냉매측 압력강하에 대하여 수행하였다. 응축기의 설계조건에서 미세휜관내 냉매 R22와 R134a의 압력강하에 대한 실험데이터와 앞서 제안한 상관관계식과 상호 비교하였다. 실험은 냉매 R22와 Rl34a의 응축기 입구온도 $60^{\circ}C$, 질량유속 $150{\sim}250\;kg/m^{2}s$ 범위에서 수행하였다. 공기의 유입조건은 건구온도 $35^{\circ}C$, 상대습도 40%이며, 공기유속의 범위는 $0.68{\sim}1.43\;m/s$이다. 실험결과 응축기의 과냉도 $5^{\circ}C$ 조건에서 R134a의 압력강하는 R22보다 $22{\sim}22.6%$ 높게 나타났으며, 냉매의 질량유속 $200{\sim}250\;kg/m^{2}s$의 범위에서 실험으로부터 측정한 R22와 Rl34a의 압력강하는 예측결과와 ${\pm}20%$내에 일치하였다.

철도 차량 온열 쾌적성에 관한 2차원 모델 개발 (Development of 2-dimensional model for thermal comfort in train)

  • 연봉준;김문언;김만회
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.9-16
    • /
    • 2007
  • This study aims to suggest an evaluation method of thermal environment using CFD, not an experiment, which is usual in the field. Model train is the newly introduced Mugunghwa train. Since its compartment occupies a large space and chairs and other accessories make it a complicated structure, 3-D calculation might take too much time and effort to make evaluation itself possible. Therefore, we suggest a 2-D model to replace the original 3-D model for averaged temperature and temperature distribution in the cabin.

  • PDF

냉동탑차의 Thermobank 열저장 매체에 따른 냉각성능 비교 (Cooling Characteristics of Refrigerated Vehicles with Heat Storage Materials in Thermobank)

  • 문제철;최광일;오종택;김재훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.810-814
    • /
    • 2009
  • A experimental study of a high efficiency transport refrigeration system for sliced-raw fish transportation is presented in this paper. The refrigeration system, that is powered by the car engine, is equipped with heat storage for reverse cycle-hot gas defrost; the stored heat is used during defrost cycle of the system. The heat storage has size $400(L){\times}350(W){\times}250(H)\;mm$ and made of fin-tube heat exchanger. System performance and container operating conditions are experimentally investigated and analyzed under cooling and defrosting conditions with heat storage materials. The water is faster about 30% than paraffin in cooling-down time of heat storage materials with load and unload.

  • PDF

A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator

  • Hong, Yong-Ju;Park, Seong-Je;Choi, Young-Don
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.41-45
    • /
    • 2010
  • Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, optoelectronic device, and integrated circuits of micro electronics. The typical J-T refrigerator consists of the recuperative heat exchanger with the double helical tube and fin configuration, J-T nozzle, a mandrel, Dewar and a compressed gas storage bottle. In this study, to predict the thermodynamic behaviors of the refrigerator with a compressed gas storage bottle during the cool-down time, numerical study of transient characteristics for a J-T refrigerator was developed. A simplified transient one.dimensional model of the momentum and energy equations was simultaneously solved to consider the thermal interactions of the each component of the refrigerator. To account for effects of the thermal mass of the solid, the heat capacities of the tube, fins, mandrel and Dewar are considered. The results show the charged gas pressure of the gas storage bottle has significant effects on the performance of the J-T refrigerator. At the elevated gas pressure of the gas storage bottle, the large capacity of the compressed gas storage does not need to get the fast cool-down performance of the J-T refrigerator in the cool-down stage.

CO2용 실외열교환기의 오일 영향에 따른 성능변화에 대한 실험적 연구 (An Experimental Study on Oil Effect of CO2 in Heat Pump Outdoor Heat Exchanger)

  • 이진관;장영수;김서영;김용찬
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.243-250
    • /
    • 2011
  • In order to investigate the effects of PAG oil concentration on heat transfer performance and pressure drop during gas cooling process of $CO_2$, the experiments on fin-tube heat exchanger of $CO_2$ heat pump were performed. The experimental apparatus consists of a gas cooler, a heater, a chiller, a mass flow meter, a pump and measurement system. Experiments were conducted in various experimental conditions, which were inlet temperature($110^{\circ}C$), mass flow rates (50, 55, 60, 65, 70 g/s) and PAG oil concentration(0 to 2.6 wt%). Heat transfer rate decreased with the increase of the oil concentration and the decrease of inlet pressure. And pressure drop increased with the increase of the oil concentration and mass flow rate of refrigerant. The COP reduction by deterioration of gas cooler performance with oil concentration was analyzed. When inlet pressure of gas cooler is 100 bar, the COP reduction was estimated by 6% under 1 wt% of oil concentration.

증발기의 압력강하에 대한 상대습도의 영향 (Effects of Relative Humidity on the Evaporator Pressure Drop)

  • 김창덕;강신형;박일환;이진호
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 - (Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water -)

  • 이운용;안덕현;김상철;박우풍;강용구;김선배
    • 현장농수산연구지
    • /
    • 제4권1호
    • /
    • pp.128-137
    • /
    • 2002
  • 개발된 알루히트를 이용하여 지하수 이용 열교환기를 개발하였다. 시작기는 600mm, 700mm 알루히트 19개의 끝을 U자 용접을 하여 지하수가 직렬흐름이 되도록 2가지로 제작하였다. 성능시험은 개방된 공간에서 지하수 유량과 공기양의 변화를 주면서 상온에서 실시하였다. 1. 시작기의 열전달 계수는 33~156(W/m2℃) 범위로 나타나 설계가정 값에 잘 일치하는 것으로 판단되었다. 2. 열전달 면적이 증가할수록, 지하수 입·출구의 온도 차이가 클수록, 공기의 입·출구 온도 차이가 클수록, 또 송풍량이 증가할수록 에너지 전달량이 증가하였다. 3. 지하수 입·출구 온도 차이가 6℃ 이고 송풍량이 6,000m3/h일 때 전달 열용량은 6,825W였으며, 공기의 입·출구 온도 차이는 25.8℃에서 23.2℃로 -2.6℃의 강화 효과가 있었고, 대류열전달계수는 88.5W/m2℃ 였다. 4. 지하수 입·출구 온도 차이가 2℃ 이고 송풍량이 4,000m3/h일 때 전달 열용량은 2,625W으로 작았지만, 공기의 입·출구 온도 차이는 27℃에서 22.5℃로 -4.5℃의 강화 효과가 있었고, 대류열전달계수는 33.6W/m2℃였다. 5. 시작기 I, II, III의 전달 열용량 데이터 각각의 상관계수 R2은 0.9141, 0.8935, 0.9393이었으며, 공기유량이 6,000m3/h, 5,000m3/h, 4,000m3/h일 때 각각의 데이터 상관계수 R2은 0.9513, 0.9414, 0.9003으로 신뢰할 수 있었다.

동일한 유입온도조건에서 R410A와 R22 적용 응축기의 특성비교 (Comparison of Condenser Characteristics using R410A and R22 under the Same Inlet Temperature Condition)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1049-1059
    • /
    • 2003
  • R410A is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R410A flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 16% is needed for R410A than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop decrease of 15% for R410A as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires lower electric-power consumption with R410A than that with R22.