• Title/Summary/Keyword: Fin-Pitch

Search Result 101, Processing Time 0.032 seconds

2 Dimensional Correlations of Heat Transfer of Oil Flows over Offset Strip Fins (옵셋 스트립 휜을 가로지르는 오일유동의 열전달 2차원 상관관계식)

  • 강덕종;신성학;정형호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.734-740
    • /
    • 2002
  • In the present study, heat transfer characteristics of oil flow over offset strip fins are predicted by the numerical methods. Oil flow in the plate-fin passage is idealized by 2 dimensions. Inlet velocity, Prandtl number and fin pitch ratio are chosen as parameters which affect the heat transfer of offset strip fins. The effect of parameters on pressure drops and convective heat transfer coefficients are described. Characteristic length is derived in case of 2 dimensional flow situation. Correlations for friction factor and convective heat transfer coefficient are derived.

Thermal Analysis of Heat Sink Models using CFD simulation (CFD를 이용한 히트싱크의 열 해석)

  • Lim, Song-Chul;Lee, Myung-Ho;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.829-832
    • /
    • 2005
  • Thermal analysis of new designed heat-sink models was carried out according to the natural ana the forced convection using computational fluid dynamics(CFD). Heat resistance of wave type, top vented wave type and plate type of heat sink was compared with each other As the direction of fin and air flow are vertical(z-axis), it is shown that radiant heat performance of all of heat sinks was superior than other experimental conditions. Especially, the heat resistance of top vented wave heat sink was $0.17^{\circ}C/W$(forced convection) and $0.48^{\circ}C/W$(natural convection). The radiant heat performance of heat sink was increased with increasing the height of fin and the width of fin pitch.

Design of an Indoor Heat Exchanger that Apply Refrigerant R410A (냉매 R410A를 적용한 실내 열교환기 설계)

  • Kim, Beom-Chan;Park, Chang-Sug;Cha, Woo-Ho;Kim, Sung-Soo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.317-322
    • /
    • 2008
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A for Gas Engine Driven Heat Pump (GHP) application and to find optimum design conditions of indoor heat exchanger by parametric analysis for the key parameters. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant of R410A. The results show that fin pitch and longitudinal pitch have significant effect on the heat exchanger preformance. This study will provide the guideline for optimum design of indoor heat exchanger with R410A for GHP application.

  • PDF

Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fins Under Wet Conditions (광폭 루버 핀이 장착된 핀-관 열교환기의 습표면 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.719-726
    • /
    • 2015
  • One method of increasing the heat-transfer rate is to increase the heat-transfer area. In this study, we test a wide louver fin-and-tube heat exchanger with $P_t/P_l$ = 1.03, and we compare the results with those of a louver fin-andtube heat exchanger with $P_t/P_l$ = 0.6. The results obtained show that the heat-transfer capacities of the wide louver samples are larger (16% in one row, 29% in two rows, and 38% in three row samples) than those of the louver samples. Considering the area ratio of 2.17, the increase in the heat-transfer capacity is somewhat small. The reason for this may be due to the smaller heat-transfer coefficient and fin efficiency of the wide louver sample. The effect of the fin pitch on the j and f factors are not profounded. The j and f factors decreased as the number of tube rows increased. We compare the data obtained with existing correlations.

Design of the Fittest Eddy Current Probe for the Fin Tubes (Fin 튜브의 와전류탐상을 위한 최적 탐촉자의 설계)

  • Kim, Y.J.;Lee, S.K.;Ahn, B.Y.;Chung, M.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.156-161
    • /
    • 1997
  • The eddy current probe was designed for the test of fin tubes that have uneven outer and inner surfaces to enhance the efficiency of heat emission. Because of the surface roughness of the fin tube, it needs much care to detect flaws in the tube employing eddy current test(ECT). We made ECT probes with different coil lengths and performed eddy current test using these probes for artificially flawed specimens. By the fast Fourier transform and digital filtering, signals from these probes were processed to characterize frequency spectra. From the analysis of eddy current signals and their frequency spectra, we concluded that, for the effective testing of the tubes with the fins of 1mm pitch, 4mm coil length gave the highest S/N ratio.

  • PDF

Numerical Analysis on Cooling Characteristics of the Heat Sink for Amplifier (앰프용 히트싱크의 방열특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.947-951
    • /
    • 2015
  • The objective of this study is to numerically investigate the cooling characteristics of the heat sink as a cooling device for the amplifier. In order to analyze the heat transfer performances of the heat sink, the steady-state thermal model of the ANSYS software was used and analyzed with the fin thickness, fin pitch and fin number of the heat sink. As a result, the temperature at the junction of heat sink was decreased with the increase of fin thickness and fin number. In addition, the thermal resistances of the heat sinks were enhanced from $0.764^{\circ}C/W$ to $0.739^{\circ}C/W$ and $1.254^{\circ}C/W$ to $0.610^{\circ}C/W$, respectively, with the increase of the fin thickness from 1 mm to 3 mm and fin number from 9 to 20, respectively.

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.

A Study on the Heat Dissipation Characteristics of Layered Heat Sink for CPU Cooling (CPU 냉각을 위한 적층형 히트싱크의 방열 특성 연구)

  • Lee, Kyu-Chill;Kim, Joung-Ha;Yun, Jae-Ho;Park, Sang-Il;Choi, Yun-Ho;Kwon, Oh-Kyung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.182-187
    • /
    • 2006
  • This research presented the heat resistance characteristics of heat sink which is newly designed through the experiment. For the same volume and base plate of heat sinks, the experiment of heat transfer characteristics was conducted for forced convection of layered type heat sink. The heat transfer and pressure drop characteristics of the layered type heat sink were compared for the various kinds of fin pitches, fin heights and heights of heat sink. The results show that thermal resistance is decreased as the height of heat sink increases and the fin height and fin pitch decrease, From the experimental data of layered type heat sink, the correlation equation of Nusselt number was obtained as follows ; $$Nu=0.845{\cdot}Re^{0.393}{\cdot}(\frac{f_h}{D_h})^{0.160}{\cdot}(\frac{f_p}{D_h})^{0.372}{\cdot}(\frac{H_{hs}}{D_h})^{-0.942}$$

  • PDF

Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions (FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성)

  • Jeong, Chul-Ki;Kim, Yong-Chan;Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.