• Title/Summary/Keyword: Fin ratio

Search Result 162, Processing Time 0.033 seconds

THE COMBUSTION CHARACTERISTICS OF THE CATALYTIC HEAT EXCHANGER WITH FIN TUBES (핀 튜브를 이용한 촉매 열 교환기의 연소특성)

  • Yu, Sang-Phil;Seo, Yong-Seog;Cho, Sung-June;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.169-177
    • /
    • 2000
  • The catalytic heat exchanger, which integrates two functions of heat generation and heat exchange into one equipment, was designed and its characteristics were investigated by the experiment and numerical simulation. The surface of the fin tube was deposited with Pd catalyst. The conversion of the mixture in the catalytic heat exchanger was more significantly affected by the inlet velocity of the mixture than by the inlet temperature and equivalence ratio of the mixture. It was found that the catalytic surface area of the fin tubes should be sufficiently increased to make the combustion intensity of the catalytic heat exchanger as high as possible. Results showed that the fin tubes, placed in the triangularly staggered form, should be adjusted so that the mixture flows uniformly over all the catalytic fin surfaces. Numerical simulation results demonstrated that the flow pattern of the mixture significantly affected the conversion of the mixture.

  • PDF

Numerical prediction of hydrogen storaging performance of finned metal hybride beds (휜이 달린 수소저항합금 베드의 수소저장 성능의 수치적 예측)

  • Kim, Myeong-Chan;Lee, Sang-Yong;Gu, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.520-529
    • /
    • 1998
  • Heat and mass transfer behaviors of metal hydride beds were predicted by solving a set of volume-averaged equations numerically both for the gas (hydrogen) and the solid(metal hydride) phases. Time variations of temperature and hydrogen concentration ratio distributions were obtained for internally cooled, cylindrical-shaped beds with metal(aluminum) fins imbedded in them. Also, time variations of the space-averaged hydrogen concentration ratio were obtained. Temperature and velocity of the coolant, hydrogen pressure at the gas inlet, and the fin spacing were taken as the parameters. The hydrogen absorption rate increases with the higher velocity and the lower temperature of the coolant, and with the decrease of the fin spacing. Increasing of the hydrogen pressure at the gas inlet also promotes the rate of absorption though the increasing rate gradually slows down. The amount of the hydrogen storage per unit volume of the bed decreases with the tighter fin spacing despite of the higher absorption rate ; therefore, there should be an optimum fin spacing for a given volume of the system and the amount of the hydrogen storage, in which the absorption rate is the highest.

Numerical Analysis on the Frosting Performance of a Fin-tube Evaporator for a Refrigerator (냉장고용 핀-튜브 증발기의 착상 성능해석에 관한 연구)

  • Lee, Moo-Yeon;Lee, Ho-Sung;Jang, Yong-Hee;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.307-316
    • /
    • 2008
  • The objective of this study is to provide numerical and experimental data that can be used to investigate the performance characteristics of a flat plate fin-tube evaporator in household and commercial refrigerators under frosting conditions. Computer simulations with variations of operating conditions such as air inlet temperature, relative humidity, and geometries were performed to find out optimal design parameters of a fin-tube evaporator for household and commercial refrigerators. The tube-by-tube method was used in the simulation and the frost growth model was considered under frosting conditions. The developed analytical model predicted the decreasing rates of heat transfer capacity and air flow rate ratio within ${\pm}$10% compared to the experimental results for a refrigerator under real operating conditions. As a result, the frost thickness at $3^{\circ}C$ & 80% is increased 40% than that of $-3^{\circ}C$ & 80%, and the frost thickness at $3^{\circ}C$ & 90% is increased 30% than that of $3^{\circ}C$ & 60%. Accordingly, the operating time of the evaporator in the refrigerator was reduced with the increase of the decreasing rate of air flow rate ratio at each condition.

Experimental Study of Heat Transfer Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 열전달특성에 관한 실험적 연구)

  • 전창덕;홍주태;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.120-139
    • /
    • 1996
  • Experiment was performed to study the heat transfer characteristics in 27 kinds of 15 : 1 scale models of multi-louverred fin heat exchangers with a wide range of variables(R $e_{Lp}$ =100~1, 800, $L_p$/F$p$=0.3~0.9, $\theta$=20$^{\circ}$~40$^{\circ}$). Thermofoil heaters were used to heat the louver fins and the local average Nusselt number for each louver in the louver array was obtained at constant wall temperature conditions. Correlations are developed to predict the heat transfer characteristics and drag coefficients. Generally, the heat transfer characteristics in the multi-louvered fins is shown to be similar to those of the laminar heat transfer on a flat plate. As the Reynolds number, the louver pitch to fin pitch ratio$L_p$/F$p$and the louver angle($\theta$) increase respectively, the average Nusselt number increases, but the variation of average Nusselt number as a function of the louver angle is smaller than that as a function of the louver pitch to fin pitch ratio. In case of$L_p$/F$p$ <0.5, the average Nusselt number of the 3rd louver is especially lower than the others, it is expected that it is due to the flow structure such as a recirculation flow and a flow separation.

  • PDF

A Kinematic Analysis on Propulsion of COG by Types of Fin-kick in SCUBA Diving (잠수 휜 킥 유형별 신체중심 추진 동작의 운동학적 분석)

  • Ryew, Che-Cheong;Oh, Hyun-Soo;Kim, Jin-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The study was undertaken to present the quantitative materials available in underwater industries, underwater rehabilitation & physical training through comparison & analysis of effects contributing to propulsion of COG by types of fin-kick in underwater activities. For this 3D cinematography was performed for the skilled subjective and conclusions obtained on the basis of analysis of kinematic variables were as follows. In temporal variable the delay in the order of flutter>side>dolphin kick in elapsed time by total & phase resulted in longer sliding phase by larger fin kick of extension & flexion of both leg and thus more contributed in propulsion of COG. than those of the otherwise. In linear variable the contribution ratio to the result of propulsion of COG in both propulsive(mean $35.39{\pm}7.93cm$ in Y axis) and sliding phases(mean $66.36{\pm}11.01cm$ in Y axis)was shown to be order of flutter>dolphin>side fin kick. the maximum velocity of COG in Y direction was showed in both propulsive and sliding phases, and the contribution ratio to the propulsion of COG was in the order of flutter$\geq$dolphin>side fin kick. In angular variable the Significant difference in angle of leg joint by types of fin kick in both leg was showed but no routine order. The Significant difference in angular velocity of leg joint by types of fin kick in both leg was showed in the order of flutter>dolphin$\geq$side fin kick in propulsive but no in sliding phase. The Fluid resistance by tilting angle of trunk in both propulsive and sliding phase was decreased in the order of flutter>dolphin$\geq$side fin kick and tilting angle of trunk of the skilled was smaller than that of the unskilled in difference of maximum mean 7.97degree and minium mean 2.06degree. In summary of the above, It will desirable fin kick type because of more contribution to COG propulsion by the velocity & displacement in Y-axis and less fluid resistance by tilting angle of trunk and larger angular velocity in the case of more delayed in elapsed time of propulsive phase than that of the otherwise.

A Rectangular Fin Optimization Including Comparison Between 1-D and 2-D Analyses

  • Kang, Hyung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2203-2208
    • /
    • 2006
  • Both 1-D and 2-D analytic methods are used for a rectangular fin optimization. Optimum heat loss is taken as 98% of the maximum heat loss. Temperature profile using 2-D analytic method and relative error of temperature along the fin length between 1-D and 2-D analytic methods are presented. Increasing rate of the optimum heat loss with the variation of Biot number and decreasing rate of that with the variation of the fin base length are listed. Optimum fin tip length using 2-D analytic method and relative error of that between 1-D and 2-D analytic methods are presented as a function of Biot numbers ratio.

Performance Analysis of Fin-Tube Heat Exchangers with Various Fin Shapes for Waste Gas Heat Recovery (핀 형상에 따른 폐열회수용 핀-튜브 열교환기의 성능분석)

  • Maeng, Jae-Hun;Koo, Byeong-Soo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.627-632
    • /
    • 2011
  • As an innovative effort to secure economically viable heat recovery system, various fin shapes for industrial fin-tube heat exchangers have been studied for better performance. In this study, the waste gas heat recovery from four different fin shapes was experimentally performed for heat transfer rate and pressure drop. According to the tested results, the twist and wavy shape fins of rectangular type show the superior performance in terms of Goodness factor and jH/f factor ratio, whereas the circular spiral fin shows the inferior values. Experimental results shows good comparison with the numerical results with a slight discrepancy of 5%, which is quite resonable.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Empirical Correlations of Frost Thickness and Frost Surface Temperature on Heat Exchanger Fin (열교환기 휜에서의 서리층 두께와 서리층 표면온도의 실험 상관식)

  • Kim, Kyoung-Min;Kim, Jung-Soo;Kim, Jang-Hyun;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.798-803
    • /
    • 2009
  • In this study, dimensionless correlations of frost properties (i.e. the thickness and surface temperature of frost) on heat exchanger fin with nonuniform temperature distribution are proposed from frosting experiments. We analyzed the local fin temperature distribution, frost thickness and frost surface temperature on a 2D fin; in the airflow direction and the direction perpendicular to airflow. As a result, the frost growth on the fin had a close relation with fin heat conduction. The dimensionless correlations for the average frost properties were expressed as a function of dimensionless temperature, humidity ratio, Reynolds number, and Fourier number. These correlations agreed well with experimental data with the error less than 14%.

  • PDF

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF