• Title/Summary/Keyword: Filtrate quality

Search Result 50, Processing Time 0.028 seconds

Potential for Development of Bank Filtrate in the Nakdong River Basin (낙동강 유역의 강변여과수 개발 가능성)

  • 전흥배;김상일
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.4
    • /
    • pp.99-116
    • /
    • 1997
  • In order to obtain safe drinking water, free from surface contamination, a study to determine the potential for developing a bank-filtrate system in the Iryong and Yongsan, Nakdong River Basin, Korea was conducted. The main type of aquifer In the study area is alluvial, consisting mostly of sand and gravel. The hydraulic conductivity(k) of the Iryong and Yongsan test areas were 8.63${\times}$10$^-2$cm/s and 9.90${\times}$10$^-2$cm/s, respectively, indicating that these areas are satisfactory for bank filtrate production. Pilot plants(IRPL and YSPL) were set up In Iryong and Yongsan to monitor the change in the quality of bank-filtered water and to determine the effect pumping had on the surrounding hydrogeologic system. The pilot plants operated continuously for about two months and the data obtained were used to validate the groundwater flow model. Computer simulations were conducted to predict the effects of producing bank filtrate using MODFLOW. MODPATH was also linked with the flow model to analyze particle tracking. According to the results of the model simulations and the hydrogeologlc study, long-term pumping, the minimization of drawdown and the availability of uncontaminated sell and groundwater conditions for the catchment area were all Important factors for successful bank-titrate system development.

  • PDF

Neutral Deinking of Mixed Office Wastepaper (Mixed Office Wastepaper의 중성탈묵)

  • 윤병태;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.50-57
    • /
    • 1999
  • This study was carried out to compare a conventional alkaline flotation deinking conditions with neutral deinking conditions with and without enzyme addition with respect to the ink removal efficiency and theflotation deinking filtrate quality such as chemical oxygen demand, cationic demand, suspended solids. Based on ink removal rate the neutral deinking condition without enzyme was better than the alkaline deinking condition, and the neutral deinking with enzyme addition turned out to be the best. The brightness of the deinked pulp was found to be the same trend as the ink removal rate. Flotation reject rate for the neutral deinking condition without enzyme was higher than that of the alkaline deinking condition, but that of the neutral deinking condition with enzyme was lower than that of the alkaline and the neutral deinking condition without enzyme. On the freeness of the deinked pulp, the neutral deinking condition with enzyme had the highest value and the alkaline deinking condition had the lowest value among the conditions tested. On the filtrate of the flotation stage, the cationic polymer demand of the neutral deinking condition with enzyme was much lower than the other conditions. Suspended solids and chemical exygen demand for the neutral flotation deinking filtrate was lower than those of the alkaline flotation deinking filtrate.

  • PDF

An Experimental Study on the Production Rate and Contaminant Removal of Filtrate in Multi-purpose Filtration Pond (다목적 여과저류지에서 여과수의 산출율과 수질개선도에 관한 실험연구)

  • Jeong, Jae-Min;Choi, Hong-Gyu;Jung, Kwan-Sue;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.518-524
    • /
    • 2013
  • A pilot-scale test-bed was operated employing three soils with different grain sizes dredged from the Nakdong River to obtain the design and operation parameters of the multi-purpose filtration pond, such as the filtrate productivity of the filter sand, the appropriate removal period of the surface clogging and the contaminant removal efficiency. The cross-flow velocities were applied stepwise ranging from 0 to 40 cm/sec in order to simulate the various velocities in the artificial stream of the pond. Results showed that a filtrate production rate of 5~3 $m^3/m^2-day$ was maintained by removing the surface clogging every 7 to 13 days and that the filtrate quality was not affected by the factors of the filtrate production rate, the grain size of the filter sand and the cross-flow velocity. Results also showed that most of the removal occurred within 50 cm of the top soil and that the removal efficiencies with the filtration distance of 2.4 m were 80~95% for turbidity, 20~30% for COD, 75~90% for BOD, 5~20% for total nitrogen and 20~60% for total phosphorus, which suggested that particulate matters had a high removal efficiency.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Comparison and application method of seawater desalination pre-treatment process (해수담수화 전처리공정 비교 및 적용 방법)

  • Lim, Hwankyu;Kim, Seunghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.437-446
    • /
    • 2019
  • Reverse osmosis seawater desalination facilities can extend the cleaning cycle and replacement time of the reverse osmosis membrane by pretreatment process. Selection of pretreatment process depends on water quality. It was attempted in this study to select approriate pretreatment process for the Masan bay, which was high in particles and organic content. For this purpose, performances of pretreatment processes such as filter adsorber (FA), pore controllable fiber (PCF), and ultrafiltration (UF) were compared based on the silt density index (SDI). The SDI value of the filtrate should be less than 3. The study results showed that UF can produce the filtrate quality satisfying the requirement. However, the transmembrane pressure (TMP) of UF increased quickly, reaching 0.6 bar within 4 days. In order to secure stable operation, FA and PCF were combined with UF. The study results showed that combination of PCF and UF was able to extend the filtration duration (more than 2 months) until to reach TMP of 0.6 bar.

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

A Study on the Diatomaceous Earth Filtration of Settling Basin Effluent (정수장 침전지 유출수의 규조토 여과에 관한 연구)

  • Shin Dae-Yewn;Ji Sung-Nam;Moon Ok-Ran;Kim Ji-Yeong;Suh Dong-Woo;Cho Young-Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.410-416
    • /
    • 2004
  • The objective of this investigation was to evaluate applicability of precoat filtration that can be substituted for rapid sand filter of conventional water treatment system(CWTS). Precoat filter used in this experiment are candle filter. Element disk of candle are pore size $10{\mu}m(R),\;20{\mu}m(B)$ And diatomaceous earth are cake pore size $3.5{\mu}m$(Standard Super- Cel; A), $7{\mu}m$(Hyflo Super-Cel; B) and $17{\mu}m$(Celite 545RV; C). $2kg/m^2$ diatomaceous earth is used for precoating, it coated candle in $5{\sim}6mm$ thickness. 1. Al adsorption dosages by diatomaceous earth used in experimental we Hyflo Super-Cel 0.843mg/g, Standard Super-Cel 0.782 mg/g and Celite 545RV 0.766 mg/g. 2. Filtrate of precoat filter during 60min are R-C combination 20.7($m^3/m^2$)>B-C 18.3($m^3/m^2$)>B-B 15.0($m^3/m^2$)> R-B 12.9($m^3/m^2$)> R-A 11,093($l/m^2$). 3. Water quality of precoat filter effluent are thus. $KMnO_4$ consumption are $1.10{\sim}2.20mg/l$, removal rate are $30.9{\sim}65.6\%$. They are R-A 1.10(mg/l)(removal rate $65.6\%$). R-C(2.20 mg/l)(removal rate $30.9\%$). 4. $Al^{3+}$ are not detected with all combination, removal rate $100\%$. 5. Considering water quality and flux, continued running time of R-A combination is 7 hr. Accumulated filtrate are $74.4 m^3/m^2$, average flux is $177.2 l/m^2{\cdot}min$. And filtrate per diatomaceous earth 1g are 37.2 l. 6. R-A effluent's water quality are $KMnO_4$ Consumption 1.10(mg/l), DOC 1.161 mg/1, Al 0.0 mg/1, $UV_{254}$ 0.016/cm, Turbidity 0.1(NTU). R-A combination is suitable to precoat filtration for the settling basin effluent treatment.

Treatment of Secondary Municipal Wastewater by Submerged Hollow Fiber MF Membranes for Water Reuse (침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구)

  • Hyun, Seunghoon;Kim, Eung Do;Hong, Seungkwan;Ahn, Wonyoung;Yim, Seongkeun;Kim, Geontae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • This study was conducted to evaluate the performance of submerged hollow fiber MF processes to treat secondary wastewater for water reuse. Specifically, membrane productivity and filtrate water quality were investigated under various operating conditions (i.e. flux, recovery, and backwash rate) at pilot-scale. Membrane fouling became more severe with increasing flux and recovery, suggesting that low flux operation (< 25 LMH) was desirable. At high flux operating(> 37.5 LMH), increasing backwash rate showed only limited success. The biofouling, quantified by PEPA and BFHPC, was also significant in wastewater reclamation, and biogrowth control by chlorine, were necessary to improve membrane productivity. Filtrate water qualities are in good compliance with water reuse regulations regardless of operating conditions (flux, recovery and backwash rate). Particle (e.g. turbidity) removal ranged from 89 to 98%, while only 11 to 21% of organics (e.g. NPDOC) were removed by MF membrane. Only small improvement in biostability (e.g. AOC) was achieved by MF system, and thus, without post disinfection, significant microorganisms might be present in the filtrate due to regrowth. Lastly, in order to further investigate pathogen removal, controlled microbial challenge tests were performed by monitoring Giardia, Cryptosporidium, bacteria and virus, and showed relatively good microbial removal.

Manganese Removal of Bank Filtrate using Manganese Sand Filtration (망간모래여과를 이용한 강변여과수의 망간제거)

  • Kim, Chung-Hwan;Kim, Hak-Chul;Kim, Han-Seung;Kim, Berm-Soo;Ahn, Hyo-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • Pilot-scale experiments were performed for the treatment of bank filtrate contammg high manganese concentration around 2mg/L using rapid manganese sand filtration to investigate effects of oxidant dose and pH control on the removal efficiency of manganese. For theoretical dose ranges of oxidant (sodium hypochlorite) between 3 and 4mg/L, the manganese concentration of effluent was 0.57 mg/L, which corresponded to 72.5% removal and was higher than drinking water quality standards of 0.3mg/L. For excess dose ranges of oxidant between 4 and 8mg/L, the manganese concentration of effluent was reduced to 0.14mg/L, which corresponded to 94.5% removal, but the residual chlorine concentration was over 1.0mg/L. On the other hand, manganese removal efficiency drastically increased up to the value of 98.0%, which is equivalent to the effluent concentration of 0.03mg/L by controling pH to the range between 7 and 8 for the theoretical dose of oxidant. Consequently, these results indicated that appropriate dose of chemicals, such as oxidant and alkali, and continuous monitoring of manganese should be necessary to obtain efficient removal of manganese and to optimize the maintenance of treatment facilities for the treatment of bank filtrate with high concentration of manganese.

The Effects of Anthracite Media Sphericity on Filtration Efficiency (안쓰라사이트 여재 원형도가 여과 효율에 미치는 영향)

  • Cheong, Won-suk;Choi, Suing-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.763-770
    • /
    • 2007
  • There are many design parameters affecting filtration efficiency such as filteration rate, media packing depth, size distribution, and so on. The sphericity, the ratio of the surface area of an equal volume sphere to the real surface area of the particles, is one of major physical characters of media. The effect of sphericity on the performance of anthracite filter has been investigated. Media from eight water treatment plants have been collected. The sphericity of each media has been calculated by using well known headloss equations such as Kozeny equation, Dahmarajah equation etc.. Columns packed with anthracite media having different sphericity have been used to compare headloss development, floc accumulation in the bed, particles in bed water, filtrate turbidities after backwash and so on. The repeated experiments have indicated that the sphericity of anthracite media may not have remarkable influence on the filter performance as it has been suspected. It also has been prospected in the experiment that the media of higher sphericity would store more particles in the bed and give better filtrate quality, if provided that the effective size and the size distribution of media would be the same.