• Title/Summary/Keyword: Filtered-x LMS Algorithm(FXLMS)

Search Result 32, Processing Time 0.016 seconds

Structure Vibration Analysis and Active Noise Control of Power Transformer (전력용변압기의 구조진동해석 및 능동소음제어)

  • Jeong, Yun-Mi;Choi, Eun-Ji;Kim, Young-Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1771-1776
    • /
    • 2013
  • Most cases of power transformer failure are caused by physical factors linked to the transient vibrations of multiple 120Hz combinations. In addition, the noise generated in the transformer from this vibration not only directly contributes to the worsening of the work environment but also causes psychological stress, resulting in the worsening of the workers efficiency and of the living environment of the inhabitants around the power plant. Thus, to remedy these problems, the mechanical-excitation forces working on a power transformer were categorized in this study, and the mechanical-damage mechanism was identified through the vibration transfer paths acting on machines or structures. In addition, a study on active noise cancellation in a transformer using the FXLMS algorithm was conducted to develop a system that is capable of multiple-sound/channel control, which resulted in the active noise reduction effect when applied on the field.

Active Noise Control for Target Point Inside Bore Using Property of MRI Noise (MRI 소음의 특성을 이용한 공동 내부 목표점의 능동소음 제어)

  • Lee, Nokhaeng;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Recently, MRI(magnetic resonance imager) scanner is continually used for medical diagnosis and many biomedical researches. When it operates, however, intense noise is generated. The SPL(sound pressure level) of the noise approaches 130 dB especially in 3 T(Tesla) MRI. Meanwhile, more than 3 T MRI scanners have been developed to get higher-resolution images, so louder noise is expected in the future. The intense noise makes patients feel nervous and uncomfortable. Moreover, it could possibly cause hearing loss to patient in extreme cases. For this reason, some active noise control systems have been researched. One of them used feedback Filtered-X LMS(FXLMS) algorithm which is able to control only narrowband noises and possible to diverge in severe case. In this paper, we determine the property of MRI noise. Using the property, we applied a method of open-loop and adaptive control for reducing MRI noise at target point inside bore. We verified performance of the method with computer simulation and preliminary experiment. The results demonstrate that the method can effectively reduce MRI noise at target point.