• Title/Summary/Keyword: Filter band

Search Result 1,650, Processing Time 0.021 seconds

A Study on the Design and Characteristics of thin-film L-C Band Pass Filter

  • Kim In-Sung;Song Jae-Sung;Min Bok-Ki;Lee Won-Jae;Muller Alexandru
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.176-179
    • /
    • 2005
  • The increasing demand for high density packaging technologies and the evolution to mixed digital and analogue devices has been the con-set of increasing research in thin film multi-layer technologies such as the passive components integration technology. In this paper, Cu and TaO thin film with RF sputtering was deposited for spiral inductor and MOM capacitor on the $SiO_2$/Si(100) substrate. MOM capacitor and spiral inductor were fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, important devices for mobile communication system. Based on the high-Q values of passive components, MOM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and 5 dB for a 900 MHz filter. This paper also discusses a analysis and practical design to thin-film L-C band pass filter.

A New Design of Trisection Band-Pass Filter Based on Electromagnetic Simulation (EM 시뮬레이션을 기반으로 한 트라이섹션 대역 통과 여파기의 새로운 설계)

  • Kim, So-Su;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1086-1096
    • /
    • 2011
  • In this paper, we present the trisection band-pass filter with a transmission zero at 2.63 GHz, which has a center frequency of 2.44 GHz, relative bandwidth of 5 %, and return loss of 18 dB, based on a multi-port ElectroMagnetic simulation. The coupling matrix for the trisection filter is calculated and this filter is transformed into band-pass filter prototype through a lossless 2-port circuit transformation. The J-inverter values and slope parameters of each individual resonator are computed using an EM simulation Y-parameters of the filter with multi port. The dimensions of desired filter are determined by matching the computed J-inverter and susceptance slope parameters to those of the prototype band-pass filter. Undesired cross-couplings are found to occur which does not appear in the prototype trisection filter. To overcome the problem of undesired couplings, the filter was optimized to satisfy the same frequency response of prototype filter. The validity of the proposed design method was verified through the implementation of the designed and optimized filter.

Dual CRLH Based Band Stop Filter Using Conductor-Backed Defected Coplanar Waveguide

  • Yang, Doo-Yeong;Yang, Lei
    • International Journal of Contents
    • /
    • v.11 no.3
    • /
    • pp.34-38
    • /
    • 2015
  • A band stop filter is proposed with cascading unit cells that are based on a dual composite right/left-handed (D-CRLH) conductorbacked coplanar waveguide. The parameters of the unit cell have been analyzed to confirm the behavior of each component for the equivalent circuit of the cell. We simulated the dispersion characteristics and energy distribution and have determined that the unit cell has a D-CRLH property. The band stop filter was implemented by symmetrically cascading two of the proposed unit cells. The experimental results for the band stop filter revealed a band rejection performance of 32 dB and a return loss of 0.35 dB in the stopband frequency range from 869MHz to 954MHz. Finally, we show that there is a good agreement in the experimental results and those obtained through the simulations.

ANALYSIS ON RECEIVING PERFORMANCE FOR KOMPSAT-5 X-BAND IMAGE DATA

  • Park, Durk-Jong;Kang, Chi-Ho;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.208-211
    • /
    • 2008
  • Band-limited filtering will be applied to remove interference resulted from two neighbored channels in the transmission of KOMPSAT-5 X-Band image data. In that case, receiver in ground station should prepare righteous matched filter to avoid huge BER degradation depending on the matched filter of COTS receiver. As an effort to simulate the bandlimited filtering, test filter was designed and manufactured on the basis of main specification for output filter of KOMPSAT-5 satellite. Consequently, 1.8dB of BER degradation was measured at the output of test band-pass filter, but the degradation was downsized up to 0.4dB thanks to the adaptive matched filter of COTS receiver.

  • PDF

Design of 1-D and 2-D Linear-phased Half-band Filters (1차원 및 2차원 선형 반대역 필터의 설계에 관한 연구)

  • 김대영;이병기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.42-49
    • /
    • 1994
  • In this paper we consider efficient 1-D and 2-D linear-phased half-band filter designs. We first introduce a new derivation of the existing Vaidynathan-Nguyen 's half-band filter design method, which verifies that the design provides optimal half-band filters. We then propose an approximately-linear-phased IIR half-band filter design method, which is based on the all-pass equalizer design with the linear phase -$\omega$/2. Finally, we propose an efficient method to design optimal 2-D half-band filters, for which we utilize a 2-D all pass prototype filter of half the order of the desired 2-D half-band filters.

  • PDF

Design of Band Pass Ring Filter for Ultra Wideband (UWB용 대역통과 링 필터의 설계)

  • Park, Dong-Kook;Seo, Yong-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.138-143
    • /
    • 2009
  • In this paper, a novel ultra-wide band filter which is operating at frequency bands from 3.1 GHz to 10.6 GHz is suggested. It is modified from the conventional ring filter and consisted of a ring with two parallel open-stub with length of ${\lambda}/8$. It improves the sharpness of the conventional ring filter and is compact. The measured results show that the fabricated filter has a insertion loss of 2.1 dB and the measured group delay of the filter is less than 463 ps through UWB frequency bands.

A Method for Improving Stopband Characteristics of a Dual-Band Filter

  • Lee, Ja-Hyeon;Lim, Yeong-Seog
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.186-191
    • /
    • 2011
  • This paper presents a simple and effective method for improving stopband rejection characteristics of previously studied dual-band filters. Small electric couplings were applied to the symmetrically positioned shunt resonators, which divided each transmission zero into two transmission zeros without any effect on passbands. We were able to achieve improved stopband rejection characteristics by these additional transmission zeros. For the filter application, we designed a dual-band filter with improved stopband characteristics using microstrip quasi-lumped elements. The electric couplings that control the location of transmission zeros are controlled by the distance between symmetric open stubs of the filter. The filter was fabricated with a relative dielectric constant of 3.5 and a thickness of 0.76 mm. The fabricated filter has a small size ($14.6{\times}13.2{\times}0.76$ mm) and a low insertion loss when compared with conventional filters.

Design of a Band-Stop Filter for UWB Application (UWB용 대역 저지 필터 설계)

  • Roh Yang-Woon;Hong Seok-Jin;Chung Kyung-Ho;Jung Ji-Hak;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.89-94
    • /
    • 2006
  • A compact microstrip band-selective filter for ultra-wideband(UWB) radio system is proposed. The filter combines the traditional short-circuited stub highpass filter and coupled resonator band-stop filter on both sides of the mitered 50-ohm microstrip line. To realize the pseudo-highpass filtering characteristic over UWB frequency band(3.1 GHz to 10.6 GHz), a distributed highpass filter scheme is adopted. Three coupled resonators are utilized to obtain the band stop function at the desired frequency band. By meandering the coupled resonators, there is $29\;\%$ size reduction in footprint compared to the traditional band-stop filter using L-shaped resonators. The measured results show that the filter has a wide passband of $146.7\;\%$(2.1 GHz to 10.15 GHz) with low insertion loss and the stop band of $10.04\;\%$(5.2 GHz to 5.75 GHz) for 3-dB bandwidth. The measured group delay is less than 0.7 ns within the passband except the rejection band.

Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator

  • Setayesh, Amir;Mirnaziry, Sayyed Reza;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • In this paper, we numerically study both band-pass and band-stop plasmonic filters based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. The band-pass filter consists of two MIM waveguides coupled to each other by a circular ring resonator. The band-stop filter is made up of an MIM waveguide coupled laterally to a circular ring resonator. The propagating modes of Surface Plasmon Polaritons (SPPs) are studied in these structures. By substituting a portion of the ring core with air, while the outer dimensions of the ring resonator are kept constant, we illustrate the possibility of red-shift in resonant wavelengths in order to tune the resonance modes of the proposed filters. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach to longer resonant wavelengths. The results are obtained by a 2D finite-difference time-domain (FDTD) method. The introduced structures have potential applications in plasmonic integrated circuits and can be simply fabricated.

A Double Bi-Quad Filter with Wide-Band Resonance Suppression for Servo Systems

  • Luo, Xin;Shen, Anwen;Mao, Renchao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1409-1420
    • /
    • 2015
  • In this paper, an algorithm using two bi-quad filters to suppress the wide-band resonance for PMSM servo systems is proposed. This algorithm is based on the double bi-quad filters structure, so it is named, "double bi-quad filter." The conventional single bi-quad filter method cannot suppress unexpected mechanical terms, which may lead to oscillations on the load side. A double bi-quad filter structure, which can cancel the effects of compliant coupling and suppress wide-band resonance, is realized by inserting a virtual filter after the motor speed output. In practical implementation, the proposed control structure is composed of two bi-quad filters on both the forward and feedback paths of the speed control loop. Both of them collectively complete the wide-band resonance suppression, and the filter on the feedback path can solve the oscillation on the load side. Meanwhile, with this approach, in certain cases, the servo system can be more robust than with the single bi-quad filter method. A step by step design procedure is provided for the proposed algorithm. Finally, its advantages are verified by theoretical analysis and experimental results.