• Title/Summary/Keyword: Film capacitor

Search Result 454, Processing Time 0.027 seconds

HFSS Simulation of High Frequency Characteristics with $BaTiO_3$ Thick Film Embedded Capacitor in Organic Substrate ($BaTiO_3$ Thick Film Embedded Capacitor 내장 유기기판에서 capacitor용량에 따른 고주파 특성 전산 모사)

  • Nah, Da-Un;Lee, Woong-Sun;Cho, Il-Whan;Chung, Qwan-Ho;Byun, Kwang-Yoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.11-12
    • /
    • 2008
  • 최근 LSI speed의 고속화에 따라, SSN (Simultaneous Switching Noise)이 매우 큰 문제가 되고 있다. 이에 PDN에 대한 많은 해결책들이 제시되고 있으나 가장 저비용 고효율을 지향할 수 있는 방법이 현재 사용되고 있는 유기기판에 Capacitor를 내장하여 로 사용하는 방법이다. Decoupling capacitor를 두께가 밟은 유기기판에 구현하기 위해서는 유전율이 큰 물질을 사용하는 것이 좋은데 본 연구에서는 $BaTiO_3$를 epoxy 에 혼합하여 10um 두께의 필름으로 제작한 후 유기기판 제조 공정에 사용하여 유기기판을 구현하였다. 이렇게 구현된 capacitor 내장 유기기판을 2 stub의 간단한 회로를 구현하여 유전율 등을 측정하였으며, 고주파 전산모사를 통하여 capacitor의 용량 변화에 따른 고주파 특성의 변화를 연구하였다.

  • PDF

Study on RF power dependence of BST thin film by the different substrates (기판에 따른 BST 박막의 RF Power 의존성)

  • 최명률;이태일;박인철;김홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.22-25
    • /
    • 2002
  • In this paper, we deposited MgO buffer layer on p-type (100)Si substrate in the condition of substrate temperature 400$^{\circ}C$, working gas ratio Ar:O$_2$=80:20, RF Power 50W, working pressure 10mtorr, and the thickness of the film was about 300${\AA}$. Then we deposited Ba$\sub$0.5/Sr$\sub$0.5/TiO$_3$ thin film using RF Magnetron sputtering method on the MgO/Si substrate in various RF power of 25W, 50W, 75W. The film deposited in 50W showed the best crystalline from the XRD measurement. To know the electrical properties of the film, we manufactured Al/BSTMgO(300${\AA}$)/Si/Al structure capacitor. In the result of I-V measurement, The leakage current density of the capacitor was lower than 10$\^$-7/A/$\textrm{cm}^2$ at the range of ${\pm}$150kV/cm. From C-V characteristics of the capacitor, can calculate the dielectric constant and it was 305. Finally we deposited BST thin film on bare Si substrate and (100)MgO substrate in the same deposition condition. From the comparate of the properties of these samples, we found the properties of BST thin film which deposited on MgO/Si substrate were better than on bare Si substrate and similar to on MgO substrate.

  • PDF

ZVS Parallel Active Power Decoupling Circuit for Applying Flyback Inverter (플라이백 인버터에 병렬로 적용되는 ZVS 방식의 전력 디커플링 회로에 관한 연구)

  • Kim, Mi-Na;Noh, Yong-Su;Kim, Jun-Gu;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.55-56
    • /
    • 2012
  • In general, a power decoupling method using electrolytic capacitor is used to solve a problem that appears 120[Hz] ripple of grid at the PV module output. But electrolytic capacitor has a effect on the short lifetime and low reliability of PV system. Therefore, studies which replace the large electrolytic capacitor with small film capacitor have been researched in resent years. This paper proposes flyback inverter which can be replaced with film capacitor by connecting the circuit implementing zero voltage switching in PV side. The proposed system is validated by PSIM simulation.

  • PDF

Capacitance Properties of Nano-Structure Controlled Alumina on Polymer Substrate (폴리머 기판위에 형성된 나노구조제어 알루미나의 캐패시터 특성)

  • Jung, Seung-Won;Min, Hyung-Sub;Han, Jeong-Whan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Embedded capacitor technology can improve electrical perfomance and reduce assembly cost compared with traditional discrete capacitor technology. To improve the capacitance density of the $Al_2O_3$ based embedded capacitor on Cu cladded fiber reinforced plastics (FR-4), the specific surface area of the $Al_2O_3$ thin films was enlarged and their surface morphologies were controlled by anodization process parameters. From I-V characteristics, it was found that breakdown voltage and leakage current were 23 V and $1{\times}10^{-6}A/cm^2$ at 3.3 V, respectively. We have also measured C-V characteristics of $Pt/Al_2O_3/Al/Ti$ structure on CU/FR4. The capacitance density was $300nF/cm^2$ and the dielectric loss was 0.04. This nano-porous $Al_2O_3$ is a good material candidate for the embedded capacitor application for electronic products.

Study on the Epoxy/BaTiO$_3$Embedded Capacitor Films for PWB Applications (인쇄회로기판 용 Epoxy/BaTiO$_3$내장형 커패시터 필름에 관한 연구)

  • 조성동;이주연;백경욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.59-65
    • /
    • 2001
  • Epoxy/$BaTiO_3$composite capacitor films with excellent stability at room temperature, uniform thickness, and electrical properties over a large area ware successfully fabricated. The composite capacitor films with good film formation capability and easy process ability were made from epoxy resin developed for ACF as a matrix and two kinds of $BaTiO_3$powders as fillers to increase the dielectric constant of the composite film. The crystal structure of the powders and its effects on dielectric constant of the films were investigated by X-ray diffraction (XRD). And the optimum amount of dispersant, phosphate ester, was determined by viscosity measurement of suspension. DSC and dielectric property tests were conducted to decide the right curing temperature and the optimum amount of the curing agent. As a result, the capacitors of 7 $\mu \textrm{m}$ thick film with 10 nF/$\textrm{cm}^2$ and low leakage current were successfully demonstrated.

  • PDF

Mesh Patterned High Tunable MIM Capacitor

  • Lee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.640-643
    • /
    • 2008
  • In this work, a novel tunable MIM capacitor with the meshed electrode is proposed first in order to improve the tunability characteristics using fringe fields. The capacitors were fabricated on a low-resistivity Si substrate employing lead zinc niobate (PZN) thin film dielectric. The fabricated capacitor with the meshed electrode, whose line width and spacing was $2.5{\mu}m$, achieved the effective capacitance tunability of 31 % that is higher value of 18.5 % than that of the conventional capacitor with the rectangular-type electrode.

  • PDF

Characteristic comparisons of the constant current LED driver by the ripple of the input voltage (LED 정전류 구동회로의 입력전압 리플 크기에 의한 특성 비교)

  • Park, Chong-Yeun;Jeon, In-Ung;Yoo, Jin-Wan;Choi, Young-Min
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.115-118
    • /
    • 2012
  • Recently, there are a lot of papers in order to replace the electrolytic capacitor into the film capacitor in output of PFC(Power Factor Correction). However, the film capacitor, which has capacitance of low values, causes a large ripple voltage in output of PFC. The LED drivers are connected series in the output of PFC and affected by the magnitude of voltage ripple. In this paper, we have compared the fixed frequency method with the variable frequency for the constant-current control and propose the control method to avoid the sub-harmonic oscillation in the variable input voltage. An 80W PFC, using film capacitors instead of electrolytic capacitors, and LED driver has been built and compared the fixed frequency control method with the variable frequency control method.

  • PDF

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF