• Title/Summary/Keyword: Filler material

Search Result 577, Processing Time 0.023 seconds

Study on Optimum Mixture of Industrial By-Products for Lightweight Foamed Filler Production by Mixture Experimental Design (혼합물 실험계획법에 의한 경량기포 충전재 제조를 위한 산업부산물의 최적 배합 검토)

  • Woo, Yang-Yi;Park, Keun-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This research studied production of lightweight filling production for sink hole restoration utilizing various industrial by-products(2kinds of fly ash, petro-cokes CFBC ash, blast furnace slag fine particle). For this purpose, the mixed raw material properties(compressive strength) behaviors according to the blending ratio of industrial by-products were examined by applying the experimental design method and statistical analysis was performed using the commercial program MINITAB. Compressive strengths of industrial by-products were strongly dependent on blast furnace slag powder. Compressive strength(3days aging) was 3~11MPa depending on the amount of blast furnace slag powder used. The use of CFBC fly ash was evaluated to have the least effect on compressive strength. In addition, the compressive strength and the coefficient of permeability were measured by preparing foamed concrete for the experimental batch 1 condition in the mixture experimental design. In this case, the bulk density is 0.9 to 1.0, the apparent porosity is 30 to 50%, the compressive strength(3days old) is 1 to 2MPa, and the permeability coefficient is $10^{-2}$ to $10^{-3}cm/sec$.

Prediction of Mechanical Properties and Behavior of Polymer Matrix Composites Based on Machine Learning (기계학습에 기반한 고분자 복합수지의 기계적 물성 거동 예측)

  • Lee, Nagyeong;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Research on polymer matrix composites with excellent molding processability and mechanical properties in the automotive field including hydrogen fuel cell electric vehicles is expanding to Computer-Aided Engineering (CAE) to support the design of materials with specific mechanical properties. CAE automation requires the prediction of the mechanical properties and behavior of materials. Unlike single materials, the mechanical properties prediction of polymer matrix composites is difficult to explain with formulas because the mechanical behavior is complicated to be explained only by the relationship between the matrix and the filler. In this study, the stress-strain curve according to the composition of polymer matrix composites, which was difficult to predict due to its sensitivity to large plastic deformation and composition, was predicted based on machine learning of the test data. The developed model finds a complex correlation between matrix and filler types and compositions, and predicts the total stress-strain curve meaningfully even in the absence of learned test data. It is expected that the material design AI system can be completed in the future based on the developed model that predicts the mechanical properties of polymer matrix composites even for the combination and composition that have not been learned.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Evaluation of TVOC contribution from Raw materials of PVC wallpaper using the Headspace-SPME-GC/MS (HS-SPME-GC/MS 법을 이용한 PVC벽지 원자재의 TVOC 기여도 평가)

  • Jang, Mi-Ok;Jeong, Tak-Kyo;Jeong, Yung-Rim;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.488-495
    • /
    • 2007
  • A wallpaper having many surfaces in indoor is composed of various raw materials. In this study, TVOC contribution from raw materials of PVC wallpaper was evaluated by using headspace-solid phase microextraction (HS-SPME)-GC/MS. Samples were diluent, resin stabilizer, plasticizer, filler, blowing agent and PVC resin. 9 mL of each sample was put into 22 mL glass vial and they were equilibrated for 1 hour at $100^{\circ}C$. Headspace in vial was absorbed to $75{\mu}m$ Carboxen-PDMS fiber and analyzed by GC/MS. Aromatic compounds like a toluene, ethylbenzene and xylene, ketones compounds like a acetone, methoxyacetone and 2-butanone and alkane compounds like a nonane decane and undecane were identified from raw materials. And alcohol compounds like a ethanol and butanol and aldehydes were detected. TVOC emission of diluent, resin stabilizer, plasticizer, PVC resin, blowing agent and filler were $54.20{\mu}g/g$, $32.88{\mu}g/g$, $0.50{\mu}g/g$, $0.88{\mu}g/g$, $0.22{\mu}g/g$ and $0.11{\mu}g/g$, respectively. Contribution of TVOC emission of diluent, resin stabilizer and PVC resin that were concerned about add ratio were 0.708, 0.129, 0.115, respectively. In conclusion, it's necessary to reduce TVOC emission through improvement of diluent, resin stabilizer and PVC resin. Also, HS-SPME-GC/MS method which was developed in this study will be used for raw materials analysis effectively.

Preparation and Mechanical Properties of Bulk Molding Compound Composite Prepared using Recycled FRP Waste Powder (폐FRP 미분말을 재활용한 BMC 복합재료의 제조 및 기계적 물성)

  • Hwang, Eui-Hwan;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • In general, fiber-reinforced plastics (FRP) wastes are simply buried or burned. Landfill brings about a permanent contamination of soil due to the inability of FRP to decompose and incineration causes an issue of generating toxic gases and dusts. There have been several ways to treat the FRP wastes such as landfill, incineration, chemical recycling, material recycling and the utilization of energy from combustion. Most methods excluding material recycling are known to have critical limitations in economic, technical and environmental manners. However it is known that material recycling is most desirable among the methods handling FRP wastes. In this study, to investigate the purpose of feasibility of material recycling, various bulk molding compound (BMC) specimens were prepared with the various contents of unsaturated polyester resin binder (25, 30, 35 wt%) and the various replacement ratios of FRP wastes powder (0, 25, 50, 75, 100 wt%) substituted for filler. To evaluate the physical properties BMC specimens, various tests such as tensile strength, flexural strength, impact strength, hot water resistance and SEM imaging were conducted. As a results, mechanical strengths decreased with an increase of replacement ratio of FRP waste powder and physical properties of BMC specimens were deteriorated in the hot water resistance. The fluidity of BMC with more than 50 wt% of the replacement ratio of FRP wastes powder decreased remarkably, causing a problem in the BMC composite.

Study on the Development of Putty According to Epoxy Resin Hardener (Epoxy 수지 경화제에 따른 Putty 개발에 관한 연구)

  • Oh, Seung-Jun;Cheong, Da-Som;Park, Gi-Jung;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2015
  • In this study, an advanced epoxy putty which was as a multi-purpose restoration material being used to restore missing parts in the artifact preservation treatment process was developed. For the purpose of addressing the issues including the workability issue resulting from high strength, the drooping issue resulting from long hardening time during work process and the issue of contaminating the surface of artifact resulting from stained material on tools or gloves, a property comparison was conducted with existing materials to examine the properties of restoration materials in the form of epoxy putty currently being frequently used. For the purpose of addressing the issues of existing materials and allowing the developed epoxy putty to have similar properties, two types of hardeners with different properties were selected to conduct property experiments. As for the hardeners, mercaptan type hardener and aliphatic amine type hardeners in the total of two types were selected for the development. The result showed that the two types were both in the form of paste and their hardening time of 5-10 minutes were about 3-10 times shorter than that of existing materials, thereby improving the work convenience. In terms of abrasion rate to increase workability, it was improved by about 3 times to allow effective and convenient use. As for the issue of contaminating the artifact surface during the process, white micro-balloon was added as filler to address the issue to reduce the oil ingredient to develop multi-purpose restoration material with low shrinkage & high workability in coloring, light weight and cutting force.

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

Dispersity of CNT and GNF on the Polyurethane Matrix: Effect of Polyurethane Chemical Structure (폴리우레탄 분자구조 변화에 따른 CNT와 GNF의 분산특성 연구)

  • Im, Hyun-Gu;Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • The aim of this study is to understand the effect of structure on the dispersion of both CNT and GNF in the phase of synthesized polyurethanes matrix. Various CNT/PU and GNF/PU composite films were prepared. Polyurethane having a different hard segment was blended with both CNT and GNF. PU having HDI as hard segment showed good dispersion with both CNT and GNF because of their linear structural character and molecular kinesis while PU having aromatic ring showed poor dispersion with those due to their structural complexity. Structural effect also induced the increase of its electro conductivity. The PU/CNT composite showed a bad dispersion (because of phase separation between PU matrix and CNT) but good electro conductivity at its surface (because CNT was collected on the surface of composite film due to low density of CNT). PU/CNT and PU/GNF composite films have quite low normalized sheet resistance value compared with silver/PU nanocomposite film because the fiber type filler could have much more contact points than that of sphere shaped silver particles have.

Transport Properties of Fluorinated Polyimide/PMMA-g-Silica Nanocomposite Membrane (PMMA가 그래프트된 실리카 나노입자를 포함한 불소계 폴리이미드 복합 분리막의 기체 투과 특성)

  • Kwon, Yu-Mi;Im, Hyun-Gu;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • To enhance the transport properties of gas separation membrane, we prepared 6FDA-6FpDA based polyimide membrane with PMMA-graft-silica nanoparticles. The silica was grafted PMMA which is miscible with 6FDA-based polyimide after surface treatment by 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). The untreated silica/6FDA-6FpDA membrane showed greater permeability and less selectivity than PMMA-g-silica/6FDA-6FpDA due to its low dispersion. The transport properties of PMMA-g-silica/6FDA-GFpDA membrane were measured as a function of filler concentration. These membranes were evaluated using pure gases (He, $O_2$, $N_2$, $CO_2$). The increase in permeation was attributed to changes in the free volume distribution until 1 wt%. After 1 wt%, the permeability was decreased by excess silica which decreased effective area in polymer matrix. The selectivity was decreased with increasing permeability on the whole. However, the selectivity of $CO_2$ showed more enhance value.

Development of Epoxy Based Stretchable Conductive Adhesive (신축 가능한 에폭시 베이스 전도성 접착제 개발)

  • Nam, Hyun Jin;Lim, Ji Yeon;Lee, Chang Hoon;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • To attach a stretchable/flexible electrode to something or something to on electrode, conductive adhesives must be stretchable/flexible to suit the properties of the electrode. In particular, conductive adhesive require durability and heat resistance, and unlike conventional adhesives, they should also have conductivity. To this end, Epoxy, which has good strength and adhesion, was selected as an adhesive, and a plasticizer and a reinforcement were mixed instead of a two-liquid material consisting of a conventional theme and a hardener, and a four-liquid material was used to give stretchability/flexibility to high molecules. The conductive filler was selected as silver, a material with low resistance, and for high conductivity, three shapes of Ag particles were used to increase packing density. Conductivity was compared with these developed conductive adhesives and two epoxy-based conductive adhesives being sold in practice, and about 10 times better conductivity results were obtained than products being actually sold. In addition, conductivity, mechanical properties, adhesion and strength were evaluated according to the presence of plasticizers and reinforcement agent. There was also no problem with 60% tensile after 5 minutes of curing at 120℃, and pencil hardness was excellently measured at 6H. As a result of checking the adhesion of electrodes through 3M tape test, all of them showed excellent results regardless of the mixing ratio of binders. After attaching the Cu sheet on top of the electrode through conductive adhesive, the contact resistance was checked and showed excellent performance with 0.3 Ω.