• Title/Summary/Keyword: Filler Model

Search Result 107, Processing Time 0.029 seconds

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

A New Model to Predict Effective Elastic Constants of Composites with Spherical Fillers

  • Kim, Jung-Yun;Lee, Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1891-1897
    • /
    • 2006
  • In this study, a new model to predict the effective elastic constants of composites with spherical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction without using Mori-Tanaka's mean field approach. When single filler is embedded in the matrix, the effective elastic constants of the composite are computed. The composite is in turn considered as a new matrix, where new single filler is again embedded in the matrix. The predicted results by the present model with a series of embedding procedures are compared with those by Mori-Tanaka, self-consistent, and generalized self-consistent models. It is revealed through parametric studies such as stiffness ratio of the filler to the matrix and filler volume fraction that the present model gives more accurate predictions than Mori-Tanaka model without using the complicated numerical scheme used in self-consistent and generalized self-consistent models.

A Study on Effective Thermal Conductivity of Particulate Reinforced Composite (입자 강화 복합재의 등가 열전도 계수에 대한 연구)

  • Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-138
    • /
    • 2006
  • Effective thermal conductivity of particulate reinforced composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory. The predicted results are compared with the experimental results from the literature. The model composite is polymer matrix filled with ceramic particles such as silica, alumina, and aluminum nitride. The preliminary examination by Eshelby type model shows that the predicted results are in good agreements with the experimental results for the composite with perfect spherical filler. As the shape of filler deviates from the perfect sphere, the predicted error increases. By using the aspect ratio of the filler deduced from the fixed filler volume fraction of 30%, the predicted results coincide well with the experimental results for filler volume fraction of 40% or less. Beyond this fraction, the predicted error increases rapidly. It can be finally concluded from the study that Eshelby type model can be applied to predict the thermal conductivity of the particulate composite with filler volume fraction less than 40%.

  • PDF

Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler

  • Mironov, V.S.;Kim, Seong Yun;Park, Min
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

The simulation of hydration of Portland cement blended with chemical inert filler

  • Xiaoyong, Wang;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1041-1044
    • /
    • 2008
  • The addition of chemical inert filler in blended cement, such as limestone or chemical inert silica fume, will produce a physical effect on cement hydration. Due to the high surface area of inert filler in the mixtures, it provides sites for the nucleation and growth of hydration products, thus improving the hydration rate of cement compounds and consequently increasing the strength at early age. This paper proposes a model of hydration of Portland cement blended with chemical inert filler. This model considers the influence of water to cement ratio, cement particle size, cement composition and addition of chemical inert filler on hydration. The heat evolution, degree of hydration and porosity are obtained as accompanied results in hydration process. The prediction results agree well with experiment results.

  • PDF

Comparison Research of Non-Target Sentence Rejection on Phoneme-Based Recognition Networks (음소기반 인식 네트워크에서의 비인식 대상 문장 거부 기능의 비교 연구)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • MALSORI
    • /
    • no.59
    • /
    • pp.27-51
    • /
    • 2006
  • For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.

  • PDF

Effect of High Filler Loading on the Reliability of Epoxy Holding Compound for Microelectronic Packaging (반도체 패키지 봉지재용 에폭시 수지 조성물의 신뢰특성에 미치는 실리카 고충전 영향)

  • 정호용;문경식;최경세
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.51-63
    • /
    • 1999
  • The effects of high filler loading technique on the reliability of epoxy molding compound (EMC) as a microelectronic encapsulant was investigated. The method of high filler loading was established by the improvement of maximum packing fraction using the simplified packing model proposed by Ouchiyama, et al. With the maximum packing fraction of filler, the viscosity of EMC wart lowered and the flowability was improved. As the amount of filler in EMC increased, several properties such as internal stress and moisture absorption were improved. However, the adhesive strength with the alloy 42 leadframe decreased when the filler content was beyond the critical value. It was found that the appropriate content of filler was important to improve the reilability of EMC, and the optimum filler combination should be selected to obtain high reliable EMC filled with high volume fraction of filler.

  • PDF

A Study on Prediction of Effective Material Properties of Composites with Fillers of Different Sizes and Arrangements (강화재의 크기 및 배치에 따른 복합재의 등가 물성치 예측에 대한 연구)

  • Lee, J. K.;Kim, J. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • The validity of Eshelby-type model with Mori-Tanaka's mean field theory to predict the effective material properties of composites have been investigated in terms of filler size and its arrangement. The 2-dimensional plate composites including constant volume fraction of fillers are used as the model composite for the analytical studies, where the filler size and its arrangement are considered as parameters. The exact effective material properties of the composites are computed by finite element analysis(FEA), which are compared with effective material properties from the Eshelby-type model. Although the fillers are periodically or randomly arranged, the average Young's moduli by Eshelby-type model and FEA are in good agreement, specially for the ratio of specimen size to filler size being smaller than 0.03. However, Poisson's ratio of the composite by the Eshelby-type model is overestimated by $20\%$.

Prediction of Viscosity in Liquid Epoxy Resin Mixed with Micro/Nano Hybrid Silica (액상 에폭시 수지와 마이크로/나노 하이브리드 실리카 혼합물의 점도 예측)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.100-105
    • /
    • 2011
  • The relative viscosity was measured at different filler loadings for a cycloaliphatic epoxy resin and hexahydro-4-methylphthalic anhydride hardener system filled with micro/nano hybrid silica. Various empirical models were fitted to the experimental data and a fitting parameter such as critical filler fractions (${\phi}_{max}$) was estimated. Among the models, the Zhang-Evans model gave the best fit to the viscosity data. For all the silica loadings used, ln (relative viscosity) varied linearly with filler loadings. Using the Zhang-Evans model and the linearity characteristics of the viscosity change, simple methods to predict the relative viscosity below ${\phi}_{max}$ are presented in this work. The predicted viscosity values from the two methods at hybrid silica fractions of $\phi$ = 0.086 and 0.1506 were confirmed for a micro:nano = 1:1 hybrid filler. As a result, the difference between measured and predicted values was less than 11%, indicating that the proposed predicting methods are in good agreement with the experiment.