• Title/Summary/Keyword: Fill-Factor

Search Result 530, Processing Time 0.032 seconds

Analysis of Electrical Characteristics of Silicon Solar cell according to the ARC thickness using Medici Program (메디치 프로그램을 이용한 실리콘 솔라셀의 ARC 두께에 따른 전기적 특성 해석)

  • Kim, Jae-Gyu;Kim, Ji-Man;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3853-3858
    • /
    • 2010
  • This paper shows electrical analysis of the silicon solar cell according to the various ARC thickness using Medici program. we built a mesh structure of the solar cell that use ARC consisting of ITO(Indium-Tin-Oxide) transparent electrode, for the Medici modeling. About various oxide layer thickness of the ARC for 30 nm, 60 nm, 90 nm, changes of the I-V curve, Isc, Voc, transmittance and external collection efficiency performed according to wavelength of Incident ray. Simulation results show maximum power 22 mW/$cm^2$, fill factor 0.83 in condition of 60 nm ITO thickness.

High Performance Amorphous Silicon Oxide Thin Film Solar Cells Fabricated at Very Low Temperature (극저온에서 증착된 비정질실리콘 산화막 기반의 고성능 박막태양전지)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1694-1696
    • /
    • 2016
  • Present thin film solar cells with hydrogenated amorphous silicon oxide (a-SiO:H) as an absorber suffer from low fill factor(FF) of 61~64 [%] in spite of its benefits related to high open circuit voltage ($V_{oc}$). Since degraded quality of a-SiO:H absorber by alloying with oxygen can affect the FF, we aimed to achieve high photosensitivity by minimizing $CO_2$ gas addition. Improving optical gap($E_{opt}$) has been attained by strong hydrogen dilution combined with lowering substrate temperature down to 100 [$^{\circ}C$]. Small amount of the $CO_2$ was added in order to disturb microcrystalline formation by high hydrogen dilution. The developed a-SiO:H has high photosensitivity (${\sim}2{\times}10^5$) and high $E_{opt}$ of 1.85 [eV], which contributed to attain remarkable FF of 74 [%] and high $V_{oc}$ (>1 [V]). As a result, high power conversion efficiency of 7.18 [%] was demonstrated by using very thin absorber layer of only 100 [nm], even though we processed all experiment at extremely low temperature of 100 [$^{\circ}C$].

Developing a B2B Integration System based on XML Database System (XML 데이터베이스 시스템을 기반으로 한 B2B 통합 시스템 개발)

  • 이정수;정상혁;주경수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2003
  • E-commerce requires many different types of communications and an unprecedented amount of data changes hands. The many different Platforms and systems interacting require a platform neutral standard for data exchange. One of the technologies that can fill this niche is XML, the extensible markup language established as a standard by the W3C. By being standardized and platform neutral, XML to be factor in e-commerce application and using many systems In this paper, we designed XML document that is used in transaction between corporations, and implement the B2B integration system based on XML database system. Also we use XSLT that make efficient transformation XML documents for exchanging heterogeneous XML data between corporations. So, he or she can more easily and efficiently exchange XML documents between corporations using this system.

  • PDF

A Study on the Performance Improvement for Flexible PCDTBT : PC71BM Organic Thin Film Solar Cell by Ozone Surface Treatment of ITO Electrode (ITO 전극의 오존 표면처리에 의한 플렉시블 PCDTBT : PC71BM 유기박막 태양전지의 성능 개선에 관한 연구)

  • No, Im-Jun;Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.104-108
    • /
    • 2012
  • Flexible organic thin film solar cell device with Bulk Hetero-Junction (BHJ) structure was fabricated with blended conjugated polymer of PCDTBT : $PC_{71}BM$ as active layer. Surface of ITO anode for the organic solar cell device was treated with ozone. The organic solar cell device with bare ITO showed short circuit current density ($J_{sc}$) of $8.2mA/cm^2$, open-circuit voltage ($V_{oc}$) of 0.73V, fill factor (FF) of 0.36, and power conversion efficiency (PCE) of 2.16%, respectively. The organic solar cell device with ozone treated ITO anode revealed distinctively improved performance parameters:$J_{sc}$ of $9.8mA/cm^2$, $V_{oc}$ of 0.82V, FF of 0.43, PCE(${\eta}$) of 3.42%.

Residents Attitude Survey of Landscape Lighting of Dongdaegu in Daegu (대구시 동대구로의 경관조명에 관한 주민의식 조사 - 동대구로 경관조명의 디자인 특성에 관한 연구 -)

  • An, Ok-Hee;Lee, In-Hyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, students in twenties of fill people who has been living in Daegu were surveyed to landscape lighting on Dongdaeguro to investigate the awareness of residents. As a result, the factor that most influenced to the night landscape lighting is the 69.2[%] to the highest and the image of Daegu city is education and culture were the highest. Need to focus on the Daegu landscape design is 'nature harmony' is the highest. The greatest and the poorest effect in the night scenery is 'lighting' and lighting conditions and brightness were negative.

Study on the Electrical Properties of W-interconnected DSSC Modules According to Variation of the Working Electrode Width (광전극 폭 변화에 따른 W-상호연결 염료감응 태양전지 모듈의 전기적 특성 연구)

  • Oh, Byeong-Yun;Kim, Sang-Ki;Kim, Doo-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.298-303
    • /
    • 2013
  • In this study, the W-interconnected dye-sensitized solar cell (DSSC) modules composed of a number of rectangular cells connected in series were investigated, where neighboring cells are processed in reverse. The DSSC modules, a module of dimension about 200 mm ${\times}$ 200 mm, were fabricated with different working electrode width ranging from 5 mm to 21 mm. The short-circuit current of the module increased as the working electrode width increased. Whereas, the decrease in the working electrode width resulted in the increase of the conversion energy efficiency, fill factor, and open-circuit voltage, which is explained by the fact that the possibility that electrons are recombined along their path on the transparent conductive oxide substrate decreases. The module with the conversion energy efficiency of 3.59% was obtained with the working electrode width of 5 mm.

Study on the influence of i/p interfacial properties on the cell performance of flexible nip microcrystalline silicon thin film solar cells (i/p 계면 특성에 따른 nip 플렉서블 미세결정질 실리콘 박막 태양전지의 특성 연구)

  • Jang, Eunseok;Baek, Sanghun;Jang, Byung Yeol;Lee, Jeong Chul;Park, Sang Hyun;Rhee, Young Woo;Cho, Jun-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.128.2-128.2
    • /
    • 2011
  • 스테인레스 스틸 유연기판 위에 플라즈마 화학기상 증착법 (plasma enhanced chemical vapor deposition)을 이용하여 nip 구조의 미세결정질 실리콘 박막 태양전지 (microcrystalline silicon thin film solar cell)를 제조하고 i ${\mu}c$-Si:H광 흡수층과 p ${\mu}c$-Si:H 사이에 i a-Si:H 버퍼 층을 삽입하여 i/p 계면특성을 개선하고 이에 따른 태양전지 성능특성 변화를 조사하였다. ${\mu}c$-Si:H 박막으로 이루어진 i/p 계면에서의 구조적, 전기적 결함은 태양전지 내에서 생성된 캐리어의 재결합과 shunt resistance 감소를 초래하여 개방전압 (open circuit voltage) 및 곡선 인자 (fill factor)를 감소시키는 것으로 알려졌다. 제조된 미세결정질 실리콘 박막 태양전지는 SUS/Ag/ZnO:Al/n ${\mu}c$-Si:H/i ${\mu}c$-Si:H/p ${\mu}c$-Si:H 구조로 제작되었으며 i/p 계면 사이의 i a-Si;H 버퍼층 두께를 변화시키고 이에 따른 태양전지의 특성을 조사하였다. 태양전지의 구조적, 전기적 특성 변화는 Scanning Electron Microscope (SEM), UV-visible-nIR spectrometry, Photo IV와 Dark IV를 통하여 조사하였다.

  • PDF

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

Performances of a-Si:H thin-film solar cells with buffer layers at TCO/p a-SiC:H interface (CO/p a-SiC:H 계면의 버퍼층에 따른 비정질 실리콘 박막태양전지 동작특성)

  • Lee, Ji-Eun;Jang, Ji-Hun;Jung, Jin-Won;Park, Sang-Hyun;Jo, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.32-32
    • /
    • 2009
  • 실리콘 박막 태양전지에서 전면 투명전도막(TCO)은 태양전지의 전기, 광학적 특성을 결정하는 중요한 기능을 한다. ZnO:Al TCO는 기존에 사용되던 $SnO_2:F$와는 비정질 실리콘(a-Si:H) 박막 태양전지의 윈도우 층으로 사용되는 p a-SiC:H와의 일함수(work function) 차이로 인해 접촉전위(contact barrier)를 형성하게 되며 이로 인해 태양전지의 충진율(fill factor)이 $SnO_2:F$에 비해 감소하는 단점을 보인다. 본 연구에서는 ZnO:Al/p a-SiC:H 계면의 접촉전위 발생원인 및 태양전지 충진율 감소현상에 관한 정확한 원인규명을 위해 다양한 특성을 갖는 버퍼층을 삽입하여 계면특성 및 태양전지의 동작특성을 분석하고자 한다.

  • PDF

ZnO nanoparticles with different concentrations inside organic solar cell active layer

  • Saravanan, Shanmugam;Ismail, Yasser A.M.;Silambarasan, Murugesan;Kishi, Naoki;Soga, Tetsuo
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • In the present work, ZnO nanoparticles (NPs) have been dispersed alone in the same solvent of the active layer for improving performance parameters of the organic solar cells. Different concentrations of the ZnO NPs have been blended inside active layer of the solar cell based on poly(3-hexylthiophene) (P3HT), which forms the hole-transport network, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which forms the electron-transport network. In the present investigations, the ZnO NPs may represent an efficient tool for improving light harvesting through light scattering inside active layer, electron mobility, and electron acceptance strength which tend to improve photocurrent and performance parameters of the investigated solar cell. The fill factor (FF) of the ZnO-doped solar cell increases nearly 14% compared to the non-doped solar cell when the doping is 50%. The present investigations show that ZnO NPs improve power conversion efficiency of the solar cell from 1.23% to 1.64% with increment around 25% that takes place after incorporation of 40% as a volume ratio of the ZnO NPs inside P3HT:PCBM active layer.