DOI QR코드

DOI QR Code

ZnO nanoparticles with different concentrations inside organic solar cell active layer

  • Saravanan, Shanmugam (Centre for Photonics and Nanotechnology, Sona College of Technology) ;
  • Ismail, Yasser A.M. (Third Generation Solar Cells Laboratory, Department of Physics, Faculty of Science, Al-Azhar University) ;
  • Silambarasan, Murugesan (Centre for Photonics and Nanotechnology, Sona College of Technology) ;
  • Kishi, Naoki (Department of Frontier Materials, Nagoya Institute of Technology) ;
  • Soga, Tetsuo (Department of Frontier Materials, Nagoya Institute of Technology)
  • Received : 2016.09.10
  • Accepted : 2016.11.12
  • Published : 2016.12.25

Abstract

In the present work, ZnO nanoparticles (NPs) have been dispersed alone in the same solvent of the active layer for improving performance parameters of the organic solar cells. Different concentrations of the ZnO NPs have been blended inside active layer of the solar cell based on poly(3-hexylthiophene) (P3HT), which forms the hole-transport network, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which forms the electron-transport network. In the present investigations, the ZnO NPs may represent an efficient tool for improving light harvesting through light scattering inside active layer, electron mobility, and electron acceptance strength which tend to improve photocurrent and performance parameters of the investigated solar cell. The fill factor (FF) of the ZnO-doped solar cell increases nearly 14% compared to the non-doped solar cell when the doping is 50%. The present investigations show that ZnO NPs improve power conversion efficiency of the solar cell from 1.23% to 1.64% with increment around 25% that takes place after incorporation of 40% as a volume ratio of the ZnO NPs inside P3HT:PCBM active layer.

Keywords

References

  1. Aernouts, T., Aleksandrov, T. and Girotto, C. (2008), "Polymer based organic solar cells using ink-jet printed active layers", Appl. Phys. Lett., 92(3), 033306. https://doi.org/10.1063/1.2833185
  2. Beek, W.J.E., Wienk, M.M. and Janssen, R.A.J. (2006), "Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles", Adv. Funct. Mater., 16(8), 1112-1116. https://doi.org/10.1002/adfm.200500573
  3. Belcher, W.J., Wagner, K.I. and Dastoor, P.C. (2007), "The effect of porphyrin inclusion on the spectral response of ternary P3HT: porphyrin:PCBM bulk heterojunction solar cells", Sol. Energy Mater. Sol. Cells, 91(6), 447-452. https://doi.org/10.1016/j.solmat.2006.09.007
  4. Ismail, Y.A.M., Soga, T. and Jimbo, T. (2010), "The contribution of coumarin 6 in light harvesting and photocurrent of P3HT:PCBM bulk heterojunction solar cell", Sol. Energy Mater. Sol. Cells, 94(8), 1406-1411. https://doi.org/10.1016/j.solmat.2010.04.059
  5. Jorgensen, M., Norrman, K., Gevorgyan, S.A., Tromholt, T., Andreasen, B. and Krebs, F.C. (2012), "Stability of polymer solar cells", Adv. Mater., 24(5), 580-612. https://doi.org/10.1002/adma.201104187
  6. Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.S. and Ree, M. (2006), "A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells", Nat. Mater., 5(3), 197-203. https://doi.org/10.1038/nmat1574
  7. Krebs, F.C. (2008), "Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes", Sol. Energy Mater. Sol. Cells, 92(7), 715-726. https://doi.org/10.1016/j.solmat.2008.01.013
  8. Krebs, F.C. (2009), "All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps", Org. Electron., 10(5), 761-768. https://doi.org/10.1016/j.orgel.2009.03.009
  9. Kruefu, V., Peterson, E., Khantha, C., Siriwong, C., Phanichphant, S. and Carroll, D.L. (2010), "Flame-made niobium doped zinc oxide nanoparticles in bulk heterojunction solar cells", Appl. Phys. Lett., 97(5), 053302-053304. https://doi.org/10.1063/1.3465866
  10. Li, G., Shrotriya, V., Yao, Y., Huang, J. and Yang, Y. (2007), "Manipulating regioregular poly (3-hexylthiophene): [6,6]-phenyl-$C_{61}$-butyric acid methyl ester blends-route towards high efficiency polymer solar cells", J. Mater. Chem., 17(30), 3126-3140. https://doi.org/10.1039/b703075b
  11. Mandoc, M.M., Koster, L.J.A. and Blom, P.W.M. (2007), "Optimum charge carrier mobility in organic solar cells", Appl. Phys. Lett., 90(13), 133504. https://doi.org/10.1063/1.2711534
  12. Mbule, P.S., Kim, T.H., Kim, B.S., Swart, H.C. and Ntwaeaborwa, O.M. (2013), "Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices", Sol. Energy Mater. Sol. Cells, 112, 6-12. https://doi.org/10.1016/j.solmat.2013.01.010
  13. Oh, S.H., Heo, S.J., Yang, J.S. and Kim, H.J. (2013), "Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT: PSS buffer layers", ACS Appl. Mater. Interf., 5(22), 11530-11534. https://doi.org/10.1021/am4046475
  14. Olson, D.C., Piris, J., Collins, R.T., Shaheen, S.E. and Ginley, D.S. (2006), "Hybrid photovoltaic devices of polymer and ZnO nanofiber composites", Thin Solid Films, 496(1), 26-29. https://doi.org/10.1016/j.tsf.2005.08.179
  15. Padinger, F., Ritterberger, R.S. and Sariciftci, N.S. (2003), "Effects of postproduction treatment on plastic solar cells", Adv. Funct. Mater., 13(1), 85-88. https://doi.org/10.1002/adfm.200390011
  16. Rong-Hua, L., Wei-Min, M., Ying-Quan, P., Chao-Zhu, M., Run-Sheng, W., Hong-Wei, X. and Ying, W. (2010), "Numerical study on open-circuit voltage of single layer organic solar cells with schottky contacts, effects of molecular energy levels, temperature and thickness", Chin. Phys. Lett., 27(8), 088401. https://doi.org/10.1088/0256-307X/27/8/088401
  17. Saravanan, S., Silambarasan, M. and Soga, T. (2014), "Structural, morphological and optical studies of Ag-doped ZnO nanoparticles synthesized by simple solution combustion method", Jpn. J. Appl. Phys., 53(11S), 11RF01. https://doi.org/10.7567/JJAP.53.11RF01
  18. Scharber, M.C. and Sariciftci, N.S. (2013), "Efficiency of bulk-heterojunction organic solar cells", Prog. Polym. Sci., 38(12), 1929-1940. https://doi.org/10.1016/j.progpolymsci.2013.05.001
  19. Scharber, M.C., Muhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J. and Brabec, C.J. (2006), "Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency", Adv. Mater., 18(6), 789-794. https://doi.org/10.1002/adma.200501717
  20. Silambarasan, M., Saravanan, S., Ohtani, N. and Soga, T. (2014), "Structural and optical studies of pure and Ni-doped ZnO nanoparticles synthesized by simple solution combustion method", Jpn. J. Appl. Phys., 53(5S1), 05FB16. https://doi.org/10.7567/JJAP.53.05FB16
  21. Vanlaeke, P., Swinnen, A., Haeldermans, I., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., D'Haen, J., Heremans, P., Poortmans, J. and Manc, J.V. (2006), "P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics", Sol. Energy Mater. Sol. Cells, 90(14), 2150. https://doi.org/10.1016/j.solmat.2006.02.010
  22. Wang, M. and Wang, X. (2008), "P3HT/ZnO bulk-heterojunction solar cell sensitized by a perylene derivative", Sol. Energy Mater. Sol. Cells, 92(7), 766-771. https://doi.org/10.1016/j.solmat.2008.01.015
  23. Yamanari, T., Taima, T., Sakai, J. and Saito, K. (2009), "Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers", Sol. Energy Mater. Sol. Cells, 93(6), 759-761. https://doi.org/10.1016/j.solmat.2008.09.022
  24. You, J., Chen, C.C., Dou, L., Murase, S., Duan, H.S., Hawks, S.A., Xu, T., Son, H.J., Yu, L., Li, G. and Yang, Y. (2012), "Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells", Adv. Mater., 24(38), 5267-5272. https://doi.org/10.1002/adma.201201958
  25. Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J. (1995), "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Sci., 270(5243), 1789-1791. https://doi.org/10.1126/science.270.5243.1789
  26. Zhou, Y., Zhang, F., Tvingstedt, K., Tian, W. and Inganas, O. (2008), "Multi-folded polymer solar cells on flexible substrates", Appl. Phys. Lett., 93(3), 033302. https://doi.org/10.1063/1.2957995

Cited by

  1. Nanoscale observation of organic thin film by atomic force microscopy vol.56, pp.8S1, 2017, https://doi.org/10.7567/JJAP.56.08LB08
  2. Formation of tiny particles and their extended shapes: origin of physics and chemistry of materials pp.2190-5517, 2019, https://doi.org/10.1007/s13204-018-0937-z