• Title/Summary/Keyword: Fill Factor

Search Result 532, Processing Time 0.03 seconds

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

Analysis of Comparison Test and Measurement Error Factor for I - V Performance of Photovoltaic Module (PV모듈 발전성능 비교시험과 계측편차 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.70-75
    • /
    • 2009
  • In this experiment, we did sampling 6 kinds of photovoltaic modules and analyzed the discrepancy of measurement results between l laboratory and 4 PV makers to have performance repeatability at Standard Test Condition(STC) condition. From the KIER's results, Korea's standard test laboratory, other laboratory showed -10% measurement variation. The causes came from correction of reference cell, test condition and the state of skill. Form the comparison test, we analyzed the problems. But three PV maker reduced measurement variation, other one PV maker and one test laboratory didn't improve the problems of correction of reference cell, test condition and the state of skill. Also, High Efficiency Module had a big discrepancy of -10.0$\sim$-6.2% among 3 laboratories which have a less than 10msec light pulse duration time. This made low spectrum response speed so the Fill Factor decreased maximum output power under 10msec light pulse duration time

Simulation of Effects of the Size of Embedded Rock Layer under Earth Fill on Seepage Problems of Sea-dike (방조제 바닥사석층의 규모가 제체 침투문제에 미치는 영향에 대한 모의 분석)

  • Lee Haeng Woo;Chang Pyoung Wuck;Song Chang Seob;Won Jeong Yun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Numerical analyses were carried out for studying on seepage problems due to seawater intrusion through the embedded rock layers of the sea-dike. A seepage analysis model, SAMTLE was developed fur two-layer embankment system. The analyses by SAMTLE showed that the size of embedded rock layer had a significant effect on the seepage problems of sea-dike. If the embedded rock layer is longer and thicker, the seepage problems become more serious to water head, seepage rate and safety factor of piping in embankment. On the other hand, if the width of embedded rock layer is equivalent to the sea-dike's bottom width, the water head becomes lower and seepage rate and safety factor of piping are dramatically increasing. This makes another seepage problems such that the fresh water becomes saltier and higher seepage rates result in internal erosion of sea-dike.

The performance dependency of the organic based solar cells on the variation in InZnSnO thickness

  • Choi, Kwang-Hyuk;Jeong, Jin-A;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.268-268
    • /
    • 2010
  • The performance dependence of the P3HT:PCBM based bulk hetero-junction (BHJ) organic solar cells (OSCs) on the electrical and the optical properties of amorphous InZnSnO (a-IZTO) electrodes as a difference in film thicknesses are examined. With an increasing of the a-IZTO thickness, the series resistance ($R_{series}$) of the OSCs is reduced because of the reduction of sheet resistance ($R_{sheet}$) of a-IZTO electrodes. Additionally, It was found that the photocurrent density ($J_{sc}$) and the fill factor (FF) in OSCs are mainly affected by the electrical conductivity of the a-IZTO anode films rather than the optical transparency at thinner a-IZTO films. On the other hand, despite the much lower $R_{series}$ comes from thicker anode films, the dominant factor affecting the $J_{sc}$ became average optical transmittance of a-IZTO electrodes as well as power conversion efficiency (PCE) in same device configuration due to the thick anode films had as sufficiently low $R_{sheet}$ to extract the hole carrier from the active material.

  • PDF

$Al/Al_2O_3/Si$(100) Solar Cell 제작 및 특성 평가

  • Min, Gwan-Hong;Yu, Jeong-Jae;Yeon, Je-Min;;Jeong, Sang-Hyeon;Kim, Gwang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.313.2-313.2
    • /
    • 2013
  • 본 연구에서는 기존에 연구된 Solar Cell 보다 구조 및 제작이 단순한 $Al/Al_2O_3/Si$(100) Solar cell을 제작하여 평가하였다. 기판으로는 p-type Si(100), 0.5~2 ${\Omega}{\cdot}cm$을 사용하여 chemical cleaning 후 ALD(Atom Layer Deposition)법으로 Al2O3 터널링 절연막을 증착하였으며, 박막의 두께를 1~10 nm로 변화시켜 MIS 커패시터의 터널링 효과를 평가하였다. MIS 커패시터의 전기적 특성평가를 위해 누설전류 밀도-전계 특성은 pA meter/DC Voltage source를 사용하였고, 커패시턴스-전압특성, D-factor 특성은 precision LCR meter를 사용하였다. $Al/Al_2O_3/Si$(100) Solar cell의 특성평가를 위해 300~1100nm 파장영역에 따른 양자 효율을 평가하기 위해 Quantum Efficiency system (QE)을 사용하였고, Stanard Test Conditions 100 $mW/cm^2$, AM1.5, $25^{\circ}C$ 조건의 Voc, Isc, Jsc, FF (Fill Factor) 및 Efficiency(%)를 평가하기 위해 Solar simulator를 이용하였다.

  • PDF

Critical Factors Affecting Selection of Travel Destinations: A Case Study in Vietnam

  • TRAN, Thanh Phong;PHAN, Trong Nghia;NGUYEN, Hoang Thinh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.9
    • /
    • pp.341-349
    • /
    • 2021
  • This study is conducted to fill the research gap in proposing and testing the relationship between "Attitudes about the overall image of the destination", "Subjective norms" and "Perceived behavioral control". Simultaneously, we examine the relationship between these variables and tourists' "intent to choose a destination.". While most previous studies only deal with the relationship between destination image and intended behavior of tourists, this study uses the theory of planned behavior (Ajzen, 1991) to explain the intended behavior of tourists. In addition, the Theory of Destination Image (Echtner & Ritchie, 1991) is used to explain the factor "attitudes about the overall image of the destination", contribute to supplementing and perfecting the Theory of Planned Behavior. This study uses a Structural Equation Modeling (SEM) to analyze a sample of 993 observations, the subjects of which are international tourists to Vietnam, to test the relationship between second-order constructs. The test results show that "Subjective norms" and "Perceived behavioral control" have an impact on "Attitudes about the overall image of the destination". Moreover, all these three factors have an impact on "Intent to choose destination", in which the factor "Perceived behavioral control" has the greatest impact on "intention to choose destination".

A study on pressurizer cutting scenario for radiation dose reduction for workers using VISIPLAN

  • Lee, Hak Yun;Kim, Sun Il;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2736-2747
    • /
    • 2022
  • The operations in the design lifecycle of a nuclear power plant targeted to be decommissioned lead to neutron activation. Operations in the decommissioning process include cutting, decontamination, disposal, and processing. Among these, cutting is done close to the target material, and thus workers are exposed to radiation. As there are only a few studies on pressurizers, there arises the need for further research to assess the radiation exposure dose. This study obtained the specifications of the AP1000 pressurizer of Westinghouse and the distribution of radionuclide inventory of a pressurizer in a pressurised water reactor for evaluation based on literature studies. A cutting scenario was created to develop an optimal method so that the cut pieces fill a radioactive solid waste drum with dimensions 0.571 m × 0.834 m. The estimated exposure dose, estimated using the tool VISIPLAN SW, in terms of the decontamination factor (DF) ranged from DF-0 to DF-100, indicating that DF-90 and DF-100 meet the ICRP recommendation on exposure dose 0.0057 mSv/h. At the end of the study, although flame cutting was considered the most efficient method in terms of cutting speed, laser cutting was the most reasonable one in terms of the financial aspects and secondary waste.

Ethylenediamine Based Surface Defect Passivation for Enhancing Indoor Photovoltaic Efficiency of Perovskite (페로브스카이트 실내 광전변환 효율 향상을 위한 ethylenediamine 기반의 표면 결함 부동화 연구)

  • Seok Beom Kang;Joo Woong Yoon;Chang Yong Kim;Sangheon Lee;Hyemin Lee;Dong Hoe Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 2023
  • As the demand for the Internet of Things grows, research into indoor photovoltaics for wireless power is becoming important. In particular, perovskite has attracted considerable attention due to its superior performance compared to other candidates. However, various surface defects present in perovskite are a limiting factor for high performance. In particular, deep-level surface defects caused by uncoordinated Pb2+ ions directly limit charge transport. In low light environments, this appears to be a more significant hurdle. In this study, ethylenediamine, which can provide covalent bonding to uncoordinated Pb2+ ions through nitrogen, was used as a surface treatment material for indoor photovoltaics. X-ray photoelectron spectroscopy confirmed that the uncoordinated Pb2+ ions were effectively passivated by the terminal nitrogen of ethylenediamine. As a consequence, a VOC of 0.998 V, a JSC of 0.139 mA cm-2 and a fill factor of 83.03% were achieved, resulting in an indoor photoelectric conversion efficiency of 38.02%.

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

An Analytical Study for Determining Optimum Section and Trench Range on Soft Counter Weight Fill (연약지반상 압성토의 최적단면 및 측구위치 결정을 위한 해석적 연구)

  • Park, Jongcheol;Chang, Yongchai;Baek, Incheol;Jung, Donghwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • The counter weight filling is a technology to accumulate soils on the side of berm with a proper width and height for improving the stability of the embankment. This study aims to assess a feasibility of the counter weight filling in the construction of pavement roads for recovery of shear failure during the construction. An effective counter weight filling section was suggested using the numerical analysis. The results showed that the effective counter weight filling section is two-fold (x2) higher than the ratio of width in counter weight filling : embankment height and one third (1/3) to the ratio of height in counter weight filling : embankment height. Also a range of effective trench crossing the counter weight filling required when a trench crossing counter weight filling is installed was suggested by supplying a proper distance between the counter weight filling section and cross-sectional trench.