Acknowledgement
이 연구는 2022년 국방과학연구소 미래도전국방기술연구개발사업(No.UI220006TD)의 지원을 받았음.
References
- Pecunia, V., Occhipinti, L. G., Hoye, R. L. Z., "Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things," Adv. Energy Mater., 11(29), 2100698 (2021).
- Teran, A. S., Wong, J., Lim, W., Kim, G., Lee, Y., Blaauw, D., Philips, J. D., "AlGaAs Photovoltaics for Indoor Energy Harvesting in mm-Scale Wireless Sensor," IEEE Trans. Electron Devices, 62(7), 2170-2175 (2015). https://doi.org/10.1109/TED.2015.2434336
- Yan, B., Liu, X. S., Lu, W. B., Feng, M. J., Yan, H. J., Li, Z. B., Liu, S. C., Wang, C., Hu, J. S., Xue, D. J., "Indoor photovoltaics awaken the world's first solar cells," Sci. Adv., 8(49), 9923 (2022).
- Mathews, I., Kantareddy, S. N., Buonassisi, T., Peters, I. M., "Technology and Market Perspective for Indoor Photovoltaic Cells," Joule, 3(6), 1415-1426 (2019). https://doi.org/10.1016/j.joule.2019.03.026
- Kim, G., Lim, J. W., Kim, J., Yun, S. J., Park, M. A., "Transparent Thin-Film Silicon Solar Cells for Indoor Light Harvesting with Conversion Efficiencies of 36% without Photodegradation," ACS Appl. Mater. Interfaces, 12(24), 27122-27130 (2020). https://doi.org/10.1021/acsami.0c04517
- Lee, C., Lee, J. H., Lee, H. H., Nam, M., Ko, D. H., "Over 30% Efficient Indoor Organic Photovoltaics Enabled by Morphological Modification Using Two Compatible Non-Fullerene Acceptors," Adv. Energy Mater., 12(22), 2200275 (2022).
- Freitag, M., Teuscher, J., Zhang, X., Giordano, F., Liska, P., Hua, J., Zakeeruddin, S. M., Moser, J. M., Gratzel, M., Hagfeldt, A., "Dye-sensitized Solar Cells for Efficient Power Generation under Ambient Lighting," Nat. Photon., 11(6), 372-378 (2017). https://doi.org/10.1038/nphoton.2017.60
- Moon, E., Lee, I., Blaauw, D., Phillips, J. D., "High-efficiency Photovoltaic Modules on a Chip for millimeter-scale Energy Harvesting," Prog. Photovolt., 27(6), 540-546 (2019). https://doi.org/10.1002/pip.3132
- Kawata, K., Tamaki, K., Kawaraya, M., "Dye-sensitised and Perovskite Solar Cells as Indoor Energy Harvestors," J. Photopolym. Sci. Technol., 28(3), 415-417 (2015). https://doi.org/10.2494/photopolymer.28.415
- Gong, O. Y., Han, G. S., Lee, S., Seo, M. K., Sohn, C., Yoon, G. W., Jang, J., Lee, J. M., Choi, J. H., Lee, D. K., Kang, S. B., Choi, M., Park, N. G., Kim, D. H., Jung, H. S., "Van der Waals Force-Assisted Heat-Transfer Engineering for Overcoming Limited Efficiency of Flexible Perovskite Solar Cells," ACS Energy Lett., 7(8), 2893-2903 (2022). https://doi.org/10.1021/acsenergylett.2c01391
- Shin, S. J., Alosaimi, G., Choi, M.J., Ann, M. H., Jeon, G. G., Seidel, J., Kim, J., Yun, J. S., Kim, J. H., "Strategic Approach for Frustrating Charge Recombination of Perovskite Solar Cells in Low-Intensity Indoor Light: Insertion of Polar Small Molecules at the Interface of the Electron Transport Layer," ACS Appl. Energy Mater., 5(11), 13234-13242 (2022). https://doi.org/10.1021/acsaem.2c01557
- Cheng, R., Chung, C. C., Zhang, H., Liu, F. Z., Wang, W. T., Zhou, Z. W., Wang, S. J., Djurisic, A. B., Feng, S.P., "Tailoring Triple-Anion Perovskite Material for Indoor Light Harvesting with Restrained Halide Segregation and Record High Efficiency Beyond 36%," Adv. Energy Mater., 9(38), 1901980 (2019).
- Li, Y. Y., Li, R. M., Lin, Q. Q., "Engineering the Non-Radiative Recombination of Mixed-Halide Perovskites with Optimal Bandgap for Indoor Photovoltaics," Small, 18(26), 2202028 (2022).
- He, X. L., Chen, J. Z., Ren, X. D., Zhang, L., Liu, Y. C., Feng, J. S., Fang, J. J., Zhao, K., Liu, S. Z., "40.1% Record Low-Light Solar-Cell Efficiency by Holistic Trap-Passivation using Micrometer-Thick Perovskite Film," Adv. Mater., 33(27), 2100770 (2021).
- Li, Z., Zhang, J., Wu, S. F., Deng, X., Li, F. Z., Liu, D. J., Lee, C. C., Lin, F., Lei, D. Y., Chueh, C. C., Zhu, Z. L., Jen, A. K. Y., "Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics," 105377, Nano Energy, 78 (2020).
- Lu, H. Z., Krishna, A., Zakeeruddin, S.M., Gratzel, M., Hagfeldt, A., "Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells," iScience, 23(8), 101359 (2020). https://doi.org/10.9717/KMMS.2020.23.8.965
- Xiong, S. B., Hou, Z. Y., Zou, S. J., Lu, X. S., Yang, J. M., Hao, T. Y., Zhou, Z. H., Xu, J. H., Zeng, Y. H., Xiao, W., Dong, W., Li, D. Q., Wang, X., Hu, Z. G., Sun, L., Wu, Y. N., Liu, X. J., Ding, L. M., Sun, Z. R., Fahlman, M., Bao, Q. Y., "Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency," Joule, 5(2), 467-480 (2021). https://doi.org/10.1016/j.joule.2020.12.009
- Haider, M. I., Hu, H., Seewald, T., Ahmed, S., Sultan, M., Schmidt-Mende, L., Fakharuddin, A., "Ethylenediamine Vapors-Assisted Surface Passivation of Perovskite Films for Efficient Inverted Solar Cells," Sol. RRL, 7(9), 2201082 (2023).
- Li, C., Wang, X., Bi, E., Jiang, F., Park, S. M., Li, Y., Chen, L., Wang, Z., Zeng, L., Chen, H., Liu, Y., Grice, C. R., Abudulimu, A., Chung, J., Xian, Y., Zhu, T., Lai, H., Chen, B., Ellingson, R. J., Fu, F., Ginger, D. S., Song, Z., Sargent, E. H., Yan, Y., "Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells," Science, 379(6633), 690-694 (2023). https://doi.org/10.1126/science.ade3970
- Li, X. T., Hoffman, J. M., Kanatzidis, M. G., "The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency," Chem. Rev., 121(4), 2230-2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- Zhang, S. S., Gutierrez-Arazluz, L., Yin, J., Wehbe, N., Shao, B. Y., Naphade, R., He, T. Y., Maity, P., Bakr, O. M., Malko, A. V., Mohammed, O, F., "Ultra-Efficient Optical Gain and Lasing in MDACl2-Doped Perovskite Thin Films," Chem. Mater., 34(21), 9786-9794 (2022). https://doi.org/10.1021/acs.chemmater.2c02857
- Jacobsson, T. J., Correa-Baena, J. P., Anaraki, E. H., Philippe, B., Stranks, S. D., Bouduban, M. E. F., Tress, W., Schenk, K., Teuscher, J., Moser, J. E., Rensmo, H., Hagfeldt, A., "Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells," J. Am. Chem. Soc., 138(32), 10331-10343 (2016). https://doi.org/10.1021/jacs.6b06320
- Wolff, C. M., Caprioglio, P., Stolterfoht, M., Neher, D., "Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces," Adv. Mater., 31(52), 1902762 (2019).
- Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Baena, J. P. C., Hagfeldt, A., Graetzel, M., "Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells," Energy Environ. Sci., 11(1), 151-165 (2018). https://doi.org/10.1039/C7EE02415K
- Le Corre, V. M., Duijnstee, E. A., El Tambouli, O., Ball, J. M., Snaith, H. J., Lim, J., Koster, L. J. A.,"Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskite via Space-Charge-Limited Current Measurements," ACS Energy Lett., 6(3), 1087-1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
- Mott, N. F., Gurney, R. W., Electronic Processes in Ionic Crystals, 274, Dover Publications (1964).
- Kao, K. C., Hwang, W., Choi, S., I., Electrical Transport in Solids, 90, Physics Today (1983).
- Poorkazem, K., Kelly, T. L., "Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering," Sustain. Energ. Fuels, 2(6), 1332-1341 (2018). https://doi.org/10.1039/C8SE00127H