• 제목/요약/키워드: File fragment type identification

검색결과 1건 처리시간 0.016초

CNN과 GRU를 활용한 파일 유형 식별 및 분류 (File Type Identification Using CNN and GRU)

  • 성민규;손태식
    • Journal of Platform Technology
    • /
    • 제12권2호
    • /
    • pp.12-22
    • /
    • 2024
  • 현대 사회에서의 디지털 데이터의 빠른 증가로 디지털 포렌식이 핵심적인 역할을 하고 있으며, 파일 유형 식별은 그 중에서 중요한 부분 중 하나이다. 파일 유형을 빠르고 정확하게 식별하기 위해서 인공지능을 사용한 파일 유형 식별 모델 개발 연구가 진행되고 있다. 그러나 기존 연구들은 일부 국내 점유율이 높은 파일을 식별할 수 없어, 국내에서 사용하기에 부족함이 있다. 따라서 본 논문에서는 CNN과 GRU를 활용한 더욱 정확하고 강력한 파일 유형 식별 모델을 제안한다. 기존 방법의 한계를 극복하기 위해 제안한 모델은 FFT-75 데이터셋에서 가장 우수한 성능을 보이며, 국내에서 높은 점유율을 가지는 HWP, ALZ, EGG와 같은 파일 유형도 효과적으로 식별할 수 있다. 제안한 모델과 세 개의 기존 연구 모델(CNN-CO, FiFTy, CNN-LSTM)을 서로 비교하여 모델 성능을 검증하였다. 최종적으로 CNN과 GRU 기반의 파일 유형 식별 및 분류 모델은 512바이트 파일 조각에서 68.2%의 정확도를, 4096바이트 파일 조각에서는 81.4%의 정확도를 달성하였다.

  • PDF