• Title/Summary/Keyword: Filaments

Search Result 676, Processing Time 0.026 seconds

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

Studies on Composite Filaments from Nanoclay Reinforced Polypropylene

  • Joshi, Mangala;Shaw, M.;Butola, B.S.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • The development of high tenacity, high modulus monofilaments from Polypropylene/Clay nanocomposite has been investigated. Pure sodium montmorillonite nanoclay was modified using hexadecyl trimethyl ammonium bromide (HTAB) via an ion exchange reaction. Pure and modified clay were characterized through X-ray diffraction, FTIR and TGA. The modified clay was melt blended with polypropylene (PP) in presence of a swelling agent. Composite filaments from PP/Clay nanocomposite were prepared at different weight percentages of nanoclay and the spinning and drawing conditions were optimized. The filaments were characterized for their mechanical, morphological and thermal properties. The composite PP filaments with modified clay showed improved tensile strength, modulus and reduced elongation at break. The composite filaments with unmodified clay did not show any improvement in tensile strength but the modulus improved. The sharp and narrow X-ray diffraction peaks of PP/nanoclay composite filaments indicate increase in crystallinity in presence of modified clay at small loadings (0.5 %). The improved thermal stability was observed in filaments with modified as well as unmodified clays.

Buckling influence of intermediate filaments with and without surface effects

  • Taj, Muhammad;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Mahmood, Shaid;Ahmad, Imtiaz
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.365-374
    • /
    • 2022
  • Intermediate filaments are the mechanical ropes for both cytoskeleton and nucleoskeleton of the cell which provide tensile force to these skeletons. In providing the mechanical support to the cell, they are likely to buckle. We used conventional Euler buckling model to find the critical buckling force under different boundary conditions which they assume during different functions. However, there are many experimental and theoretical studies about other cytoskeleton components which demonstrate that due to mechanical coupling with the surrounding surface, the critical buckling force increases considerably. Motivated with these results, we also investigated the influence of surface effects on the critical buckling force of intermediate filaments. The surface effects become profound because of increasing ratio of surface area of intermediate filaments to bulk at nano-scale. The model has been solved analytically to obtain relations for the critical forces for the buckling of intermediate filaments without and with surface effects. We found that critical buckling force with surface effects increases to a large extent due to mechanical coupling of intermediate filaments with the surrounding surface. Our study may be useful to develop a unified experimental protocol to characterize the physical properties of Intermediate filaments and may be helpful in understanding many biological phenomenon involving intermediate filaments.

Beyond halo mass: the role of vorticity-rich filaments in quenching galaxy mass assembly

  • Song, Hyunmi;Laigle, Clotilde;Hwang, Ho Seong;Devriendt, Julien;Dubois, Yohan;Kraljic, Katarina;Pichon, Christophe;Slyz, Adrianne;Smith, Rory
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2020
  • We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The HORIZON-AGN simulation is analysed at z~2 using the DISPERSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.

  • PDF

The study on toothbrush filaments (칫솔 강모 형태에 관한 연구)

  • Han, Seung-Min;Yang, Seung-Min;Lee, Young-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Choi, Sang-Mook;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.857-864
    • /
    • 2002
  • The aim of this study is to investigate the end of filaments of the different toothbrushes in the market through the stereomicroscope and to evaluate the % of rounded-end filaments considered to be acceptable. 9 brands, total 11 type toothbrushes were tested. 2 toothbrushes of each type which is marked as rounded-end filaments were tested. The toothbrushes which are not marked as rounded-end filaments were excluded. The domestic as well as foreign toothbrushes which are familiar to consumers were tested. 2 tufts of each toothbrushes were cut and examined by stereomicroscope using $40{\times}$ magnification. The procedure was carried out with blind-technique, and the digital photographs were taken. Besides the % of rounded-end filaments, total tufts number, material of the tuft, stiffness, and other special characteristics were recorded. By the classification of Silverstone and Featherstone, rounded-end filaments were examined and counted. The results shows that there are different range of rounded-end filaments according to the toothbrush types(17.7%-91.2%). Atman toothbrush has the most rounded-end filaments(91.2%) among the observed toothbrushes, and the Advantage Plus(Ora1-B) has the next(86.75%). E-Clean #411 has the least(17.70%) and E-Clean #410 of the same brand has also low % rounded-end filaments(20.60%). While G.U.M #409(Butler) has 67.90% rounded-end filaments, G.U.M #471 of the Same brand has comparative low 41.83% rounded-end filaments. 4 types of total 11 have the rounded-end filaments over 80%, however other 4 types have under even 50%. Considering that the correct brushing habit with a toothbrush which has rounded-end filaments can protect the gingival injury and tooth abrasion, it is thought that we dentists need to give the correct information about toothbrush to the patients

FUNS - Filaments, the Universal Nursery of Stars. I. Physical Properties of Filaments and Dense Cores in L1478

  • Chung, Eun Jung;Kim, Shinyoung;Soam, Archana;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • Formation of filaments and subsequent dense cores in ISM is one of the essential questions to address in star formation. To investigate this scenario in detail, we recently started a molecular line survey namely 'Filaments, the Universal Nursery of Stars (FUNS)' toward nearby filamentary clouds in Gould Belt using TRAO 14m single dish telescope equipped with a 16 multi-beam array. In the present work, we report the first look results of kinematics of a low mass star forming region L1478 of California molecular cloud. This region is found to be consisting of long filaments with a hub-filament structure. We performed On-The-Fly mapping observations covering ~1.1 square degree area of this region using C18O(1-0) as a low density tracer and 0.13 square degree area using N2H+(1-0) as a high density tracer, respectively. CS (2-1) and SO (32-21) were also used simultaneously to map ~290 square arcminute area of this region. We identified 10 filaments applying Dendrogram technique to C18O data-cube and 13 dense cores using FellWalker and N2H+ data set. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that filaments in L~1478 are velocity coherent and supercritical. Especially the filaments which are highly supercritical are found to have dense cores detected in N2H+. Non-thermal velocity dispersions derived from C18O and N2H+ suggest that most of the dense cores are subsonic or transonic while the surrounding filaments are transonic or supersonic. We concluded that filaments in L~1478 are gravitationally unstable which might collapse to form dense cores and stars. We also suggest that formation mechanism can be different in individual filament depending on its morphology and environment.

  • PDF

Algorithm for Detection of Solar Filaments in EUV

  • Joshi, Anand D.;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.2-66.2
    • /
    • 2015
  • In today's age when telecommunications using satellite has become part of our daily lives, one has to be employ preventive measures to avert any possible danger, of which solar activity is the major cause. Coronal mass ejections (CMEs) heading towards the Earth can lead to disturbances in the Earth's magnetosphere, if their magnetic field is oriented southward. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Also, filaments show activation up to a few hours prior to launch of a CME and thus can provide advance warning. In this study, we present an algorithm for the detection of solar filaments seen in the extreme ultraviolet (EUV) from Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). Various morphological operations are employed to identify and extract the filaments. These filaments are then tracked in order to determine their size and location continuously.

  • PDF

Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media

  • Taj, Muhammad;Safeer, Muhammad;Hussain, Muzamal;Naeem, Muhammad N.;Ahmad, Manzoor;Abbas, Kamran;Khan, Abdul Q.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • Cytoskeleton components in living cell bear large compressive force and are responsible in maintaining the cell shape. Actually these filaments are surrounded by viscoelastic media within the cell. This surrounding, viscoelastic media affects the buckling behavior of these filaments when external force is applied on these filaments by exerting continuous pressure in opposite directions to the incipient buckling of the filaments. In this article a mechanical model is applied to account the effects of this media on the buckling behavior of intermediate filaments network of cytoskeleton. The model immeasurably associates; filament's bending rigidity, adjacent system elasticity, and cytosol viscosity with buckling wavelength, buckling growth rate and buckling amplitude of the filaments.

Study on NbTi superconducting joint process for high field MRI magnet (고자장 MRI 마그네트를 위한 NbTi 초전도 접합 공정 연구)

  • 하동우;오상수;하홍수;이남진;고락길;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.165-167
    • /
    • 2002
  • NbTi/Cu superconducting wires were jointed inserting the NbTi filaments into Cu/NbTi sleeve and pressing it. When the NbTi filaments were inserted into Cu/NbTi sleeve, additional NbTi filaments were inserted together to increase the numbers of filaments in the hole of sleeve. Critical current of the joint of 28 filaments wires with 1.7 mm thickness of dimple was 450 A at 4.2K, 0.5T. Ic of the joint of 54 filaments wires with 2.0 mm thickness of dimple was 600 A at 4.2K, 2T. It is possible to manufacture MRI magnet by using these results.

  • PDF

UPWELLING FILAMENTS AND THEIR ROLE IN CROSSFRONTAL WATER EXCHANGE

  • Kostianoy, A.G.;Soloviev, D.M.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.954-957
    • /
    • 2006
  • Satellite data (thermal and color imagery) show that offshore flowing filaments off the west coasts of North America, North and South Africa can influence significantly the cross-frontal mixing in the coastal upwelling zones. To evaluate this role, we investigated structure, dynamics and behavior of surface filaments in the Canary and Benguela upwelling regions on the base of daily satellite IR and VIS imagery (AVHRR NOAA, MODIS-Aqua). It was found that seasonal variability of the filaments location depends on intra-annual shift of general upwelling intensity along the coast. The main statistical characteristics of filaments - length, width, temperature anomaly and estimates of velocity were obtained. Estimates of cross-frontal water exchange due to filamentation based on the statistical data show that these coherent structures play a major role in the water and particle exchange between coastal zone and the open ocean in both upwelling regions.

  • PDF