• 제목/요약/키워드: Fighter-Aircraft Software

검색결과 11건 처리시간 0.027초

전투기 감항 보안 인증을 위한 위험기반 보안위협 평가 프로세스 설계 (A Design of Risk-Based Security Threat Assessment Process for Fighter-Aircraft Airworthiness Security Certification)

  • 김현주;강동수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권6호
    • /
    • pp.223-234
    • /
    • 2019
  • 첨단 무기체계들이 고도로 연동되어 수행되는 네트워크 중심전에서는 사이버 공격이 전쟁의 승패를 좌우하는 커다란 위협으로 대두되었다. 또한 최신예 전투기로 발전할수록 증가하는 소프트웨어 의존도는 사이버 공격에 대한 전투기 소프트웨어의 강화된 보안대책을 요구하고 있다. 본 논문에서는 항공기 감항 보안 인증 표준인 DO-326A를 적용함에 있어 전투기의 특성 및 운용환경을 반영하여 위험기반 보안위협 평가 프로세스를 설계한다. 이를 위하여 DO-326A의 감항 보안 인증 프로세스의 보안위협 평가 단계에서 전투기 보안위협을 도출하고 사이버 공격의 발생 가능성과 전투기에 미치는 영향력의 관점에서 위협을 점수화하며 보안위험 심각도를 결정하는 단계를 추가하여 적용한다.

계층화의사결정법(AHP)을 이용한 전투기의 기종선정에 관한 연구 (A Study on the Application of Analytic Hierarchy Process to the selection of Fighter Plane)

  • 은희봉;김봉선
    • 한국항공운항학회지
    • /
    • 제6권1호
    • /
    • pp.51-69
    • /
    • 1998
  • This paper was studied to present a model for the application of AHP to the selection of fighter planes. For this study, a questionnaire was developed in respect to the criteria of fighter plane and given to 70 reserved officers who had experienced as fighter pilots in Republic of Korean Air Force (ROKAF) to ask their opinions about the candidates for the next-generation fighter planes of the ROKAF. The AHP software developed by Korean Advanced Institute of Science Technology (KAIST) was used to process the data. The result was analyzed by the criteria of selecting military aircraft and the several alternatives for the next-generation fighter planes.

  • PDF

Conceptual design and RCS property research of three-surface strike fighter

  • Yue, Kuizhi;Tian, Yifeng;Liu, Hu;Han, Wei
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.309-319
    • /
    • 2014
  • This paper mainly focuses on the conceptual design and stealth performance of the three-surface military aircraft. A three-dimensional (3-D) digital mock-up of the three-surface strike fighter with stealth feature was designed and the schemes of carrying missiles were analyzed in CATIA. Based on physical optics principle and the Method of Equivalent Currents (MEC), a numerical simulation of the RCS feature of the aircraft was carried out with RCSPlus which is a software designed by Beihang University. The paper contributes to the RCS feature analysis of the whole plane and different parts on X-band, S-band and UHF-band and a comparison of RCS feature to Su-37 and T-50 military aircraft is drawn. On X-band, the pitch angle of the incident wave was $0^{\circ}$, and the result shows: (1) Compared with Su-37 aircraft, the forward scattering RCS of the three-surface strike aircraft was reduced to 14.9%, the side scattering RCS to 9.6% and the back scattering RCS to 40.2%. (2) Compared with T-50 aircraft, the forward scattering RCS was reduced to 38.61%, and the side scattering RCS to 67.26%. This paper should be useful for researchers in conceptual design and stealth technology of the military aircraft.

SW Program Development of a Real-Time Flight Data Acquisition and Analysis System for EO/IR Pod

  • Kim, Songhyon;Cho, Donghyurn;Lee, Sanghyun;Kim, Jongbum;Choi, Taekyu;Lee, Seungha
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.42-49
    • /
    • 2021
  • To develop a high-resolution electro-optical/infrared (EO/IR) payload to be mounted on a high-speed and performance fighter aircraft in an external POD for acquiring daytime and nighttime image information on tactical targets, simulations, including flight environments and maneuvers, should be performed. Such simulations are pertinent to predicting the performance of several variables, such as aerodynamic force and inertia load acting on the payload. This paper describes the development of a flight data acquisition and analysis system based on flight simulation software (SW) for mission simulation of super-maneuverability fighter equipped with EO/IR payload. The effectiveness of the system is verified through comparison with actual flight data. The proposed flight data acquisition and analysis system based on FlightGear can be used as an M&S tool for system performance analysis in the development of the EO/IR payload.

Implementation of Vertigo Warning function for FA-50 aircraft

  • You, Eun-Kyung;Kim, Hyeock-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권10호
    • /
    • pp.1-9
    • /
    • 2019
  • 전투기 조종사는 '비행환경 적응 교육 훈련(APT)'을 이수함으로써 악조건 속에서도 완벽하게 임무를 수행할 수 있도록 능력을 향상시키고 있다. 그러나 비행 시 가속도로 인해 인체 평형기관의 이상으로 'Vertigo(Spatial disorientation)' 현상에 빠지게 되어 추락하는 사고 사례가 발생하고 있다. 이러한 비행착각에 빠지는 전투기 추락 사고는 국내 외를 불문하고 빈번하게 발생하고 있다. 이에 본 연구에서는 전투기에 'Vertigo' 경고 기능을 구현하고자 하였다. 먼저, 항공기 주임무 컴퓨터와 현재 구현되어 있는 경고 기능을 분석하였다. 그리고 항공기 자세 정보를 이용하기 위해 좌표계 시스템을 연구하였다. 이를 바탕으로 전투기가 배면 비행 자세로 일정 시간 이상 하강 시 전방시현장비에 시각적인 경고 기능을 제공하고자 하였다. 본 기능을 구현함으로써 조종사의 비행 안전을 향상시킬 수 있을 것이라고 기대한다. 또한 본 연구 결과를 바탕으로 다른 서브시스템과의 연계를 통한 경고 기능 구현 방안을 제안하고자 한다.

Simulation of Conceptual Designs of a Three-Surface Stealth Strike Fighter

  • Kuizhi, Yue;ShiChun, Chen;Wenlin, Liu;Dazhao, Yu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.366-373
    • /
    • 2014
  • A conceptual design of a three-surface strike fighter was studied and stealth performance was taken into account to enhance survivability and battle effectiveness. CATIA was used to design the aircraft's three-dimensional prototype model and the weapon carriage arrangement was also studied. The aircraft's RCS characteristics and distributions under X, S, C, and L bands were simulated using the RCSPlus software, which is based on the PO method. Pressure and velocity distributions of the flow field were also simulated using CFD. A turbulence model was based on standard $k-{\varepsilon}$ function and N-S functions were used during the CFD computation. Lift coefficients, drag coefficients, and lift-to-drag ratio were obtained by aerodynamic simulation. The results showed that: (1) the average value of head-on RCS between ${\pm}30^{\circ}$ is below -3.197 dBsm, and (2) the lift coefficient is 0.34674, the drag coefficient is 0.04275, and the lift-to-drag ratio is 8.11087 when the attack angle is $2.5^{\circ}$.

제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구 (A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law)

  • 김종섭;조인제;안종민;신지환;박상선
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

비행제어시스템 설계 및 검증 절차 (Flight Control System Design and Verification Process)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.824-836
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, flight control systems are necessary to stabilize an unstable aircraft, and provides adequate handling qualities and achieve performance enhancements. Standard FCSDVP (Flight Control System Design and Verification Process) is provided to reduce development period of the flight control system. In addition, if this process is employed in developing flight control system, it reduces the trial and error for development and verification of flight control system. This paper addresses the flight control system design and verification process for the RSS aircraft utilizing design goal based on military specifications, linear and nonlinear system design and verification based on universal software, handling quality test based on HILS(Hardware In-the-Loop Simulator) environment, and ground and flight test results to verify aircraft dynamic flight responses.

항공기 자세회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Pilot Activated Recovery System to Recovery of an Aircraft Unusual Attitude)

  • 김종섭;조인제;강임주;허기봉;이은용
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.307-317
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modem version supersonic jet fighter aircraft. Therefore, flight control system are necessary to stabilize an unstable aircraft and provides adequate handling qualities. Also, flight control systems of modem version aircraft employ a safety system to support emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. Therefore, automatic recovery system is necessary. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes. This paper addresses the concept of PARS and designed using nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by nonlinear analysis and real-time pilot evaluation using in-house software. The result of evaluation reveals that the PARS support recovery of an aircraft unusual attitude and improve a safety of an aircraft.

공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발 (The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation)

  • 이민석;오지현;김천영;배정호;김용덕;지철규
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.