• 제목/요약/키워드: Field-learning

검색결과 3,022건 처리시간 0.027초

Systematic Review of Bug Report Processing Techniques to Improve Software Management Performance

  • Lee, Dong-Gun;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.967-985
    • /
    • 2019
  • Bug report processing is a key element of bug fixing in modern software maintenance. Bug reports are not processed immediately after submission and involve several processes such as bug report deduplication and bug report triage before bug fixing is initiated; however, this method of bug fixing is very inefficient because all these processes are performed manually. Software engineers have persistently highlighted the need to automate these processes, and as a result, many automation techniques have been proposed for bug report processing; however, the accuracy of the existing methods is not satisfactory. Therefore, this study focuses on surveying to improve the accuracy of existing techniques for bug report processing. Reviews of each method proposed in this study consist of a description, used techniques, experiments, and comparison results. The results of this study indicate that research in the field of bug deduplication still lacks and therefore requires numerous studies that integrate clustering and natural language processing. This study further indicates that although all studies in the field of triage are based on machine learning, results of studies on deep learning are still insufficient.

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.

RGB 비디오 데이터를 이용한 Slowfast 모델 기반 이상 행동 인식 최적화 (Optimization of Action Recognition based on Slowfast Deep Learning Model using RGB Video Data)

  • 정재혁;김민석
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1049-1058
    • /
    • 2022
  • HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.

A study on real-time internet comment system through sentiment analysis and deep learning application

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • 제11권2호
    • /
    • pp.3-14
    • /
    • 2023
  • This paper proposes a big data sentiment analysis method and deep learning implementation method to provide a webtoon comment analysis web page for convenient comment confirmation and feedback of webtoon writers for the development of the cartoon industry in the video animation field. In order to solve the difficulty of automatic analysis due to the nature of Internet comments and provide various sentiment analysis information, LSTM(Long Short-Term Memory) algorithm, ranking algorithm, and word2vec algorithm are applied in parallel, and actual popular works are used to verify the validity. If the analysis method of this paper is used, it is easy to expand to other domestic and overseas platforms, and it is expected that it can be used in various video animation content fields, not limited to the webtoon field

  • PDF

Design and Implementation of a Body Fat Classification Model using Human Body Size Data

  • Taejun Lee;Hakseong Kim;Hoekyung Jung
    • Journal of information and communication convergence engineering
    • /
    • 제21권2호
    • /
    • pp.110-116
    • /
    • 2023
  • Recently, as various examples of machine learning have been applied in the healthcare field, deep learning technology has been applied to various tasks, such as electrocardiogram examination and body composition analysis using wearable devices such as smart watches. To utilize deep learning, securing data is the most important procedure, where human intervention, such as data classification, is required. In this study, we propose a model that uses a clustering algorithm, namely, the K-means clustering, to label body fat according to gender and age considering body size aspects, such as chest circumference and waist circumference, and classifies body fat into five groups from high risk to low risk using a convolutional neural network (CNN). As a result of model validation, accuracy, precision, and recall results of more than 95% were obtained. Thus, rational decision making can be made in the field of healthcare or obesity analysis using the proposed method.

위암에서 인공지능의 응용 (Application of Artificial Intelligence in Gastric Cancer)

  • 이정인
    • Journal of Digestive Cancer Research
    • /
    • 제11권3호
    • /
    • pp.130-140
    • /
    • 2023
  • Gastric cancer (GC) is one of the most common malignant tumors worldwide, with a 5-year survival rate of < 40%. The diagnosis and treatment decisions of GC rely on human experts' judgments on medical images; therefore, the accuracy can be hindered by image condition, objective criterion, limited experience, and interobserver discrepancy. In recent years, several applications of artificial intelligence (AI) have emerged in the GC field based on improvement of computational power and deep learning algorithms. AI can support various clinical practices in endoscopic examination, pathologic confirmation, radiologic staging, and prognosis prediction. This review has systematically summarized the current status of AI applications after a comprehensive literature search. Although the current approaches are challenged by data scarcity and poor interpretability, future directions of this field are likely to overcome the risk and enhance their accuracy and applicability in clinical practice.

지역사회개발론에 근거한 평생학습도시 사업 개선 방안 탐색 (A Study on the Methods of Improving the Lifelong Learning City Project Based on the Community Development Theory)

  • 양흥권
    • 한국지역사회생활과학회지
    • /
    • 제19권2호
    • /
    • pp.245-265
    • /
    • 2008
  • The Lifelong Learning City Project has made quantitative expansion as well as qualitative growth since 2001 but the project has been criticized by academic scholars and field practitioners. The Lifelong Learning City Project is a national policy project which has been promoted by the Ministry of Education and Human Resources Development and should be required to make production profits proportional to the amount of public finance. The Lifelong Learning City Project is a community development project intended to promote growth and progress by supporting the community in lifelong learning endeavors. Therefore, the community development theory could offer guidelines to the Lifelong Learning City Project. Based on this assumption, this study intends to investigate the Lifelong Learning City Project at the national, city, and county levels using the community development theory. The improvement methods of the Lifelong Learning City Project are role allotment between national and wide level projects supporting organizations, and the establishment of a system and a long term project policy. In addition, the project is to have a more systematic performance. It is to enhance opportunities for community members' participation, and practice in planning, performance of learning, and the proper performance in regard to the community conditions and specificity. The most important goal of the Lifelong Learning City Project is to support the empowerment of community members by making opportunity planning, practicing and sharing lifelong learning more accessible.

  • PDF

Animated Game-Based Learning of Data Structures In Professional Education

  • Waseemullah, Waseemullah;Kazi, Abdul Karim;Hyder, Muhammad Faraz;Basit, Faraz Abdul
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.1-6
    • /
    • 2022
  • Teaching and learning are one of the major issues during this pandemic (COVID-19). Since the pandemic started, there are many changes in teaching and learning styles as everything related to studies started online. Game-Based Learning has got remarkable importance in the educational system and pedagogy as an effective way of increasing student inspiration and engagement. In this field, most of the work has been carried out in digital games. This research uses an Animated Game-Based Learning design in enhancing student engagement and perception of learning. In teaching Computer Science (CS) concepts in higher education, to enhance the pedagogy activities in CS concepts, more specifically the concepts of "Data Structures (DS)" i.e., Array, Stack, and Queue concepts are focused. This study aims to observe the difference in students' learning with the use of different learning methods i.e., the traditional learning (TL) method and the Animated Game-Based Learning (AGBL) Method. The experimental results show that learning DS concepts has been improved by the AGBL method as compared to the TL method.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Active Learning Environment for the Heritage of Korean Modern Architecture: a Blended-Space Approach

  • Jang, Sun-Young;Kim, Sung-Ah
    • International Journal of Contents
    • /
    • 제12권4호
    • /
    • pp.8-16
    • /
    • 2016
  • This research proposes the composition logic of an Active Learning Environment (ALE), to enable discovery by learning through experience, whilst increasing knowledge about modern architectural heritage. Linking information to the historical heritage using Information and Communication Technology (ICT) helps to overcome the limits of previous learning methods, by providing rich learning resources on site. Existing field trips of cultural heritages are created to impart limited experience content from web resources, or receive content at a specific place through humanities Geographic Information System (GIS). Therefore, on the basis of the blended space theory, an augmented space experience method for overcoming these shortages was composed. An ALE space framework is proposed to enable discovery through learning in an expanded space. The operation of ALE space is needed to create full coordination, such as a Content Management System (CMS). It involves a relation network to provide knowledge to the rule engine of the CMS. The application is represented with the Deoksugung Palace Seokjojeon hall example, by describing a user experience scenario.